首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用较粗的聚丙烯(PP)单丝作为石膏材料的增强材料,通过抗折和抗压实验研究了单丝长度、掺量对PP单丝/石膏复合材料抗折和抗压强度的影响.抗折实验结果表明:PP单丝的掺入有利于提高复合材料的抗折强度,当掺量小于1%时,复合材料抗折强度随掺量增加而变大,当掺量为2%时复合材料抗折强度呈下降趋势;掺量相同的情况下,单丝长度越长增强效果越好,15 mm的PP单丝掺量为1%的试样抗折强度最高较空白样提高了26%;折断后试样断口中PP单丝呈拔出状,表明PP单丝与石膏材料的结合较弱.抗压实验结果表明:PP单丝的掺入降低了复合材料的抗压强度,抗压强度随掺入量增加而减小,15 mm的PP单丝掺量为2%的试样抗压强度最小较空白样减少了9.6%.  相似文献   

2.
目的研究硅酸盐水泥-硫铝酸盐水泥复掺后的凝结时间及力学性能.方法分别测试不同硅酸盐水泥、矿物掺合料掺量下硅酸盐水泥-硫铝酸盐水泥复合体系的凝结时间及胶砂强度,并利用X射线衍射仪和扫描电子显微镜进行矿物组成和结构分析.结果硅酸盐水泥-硫铝酸盐水泥复合体系的凝结时间随硅酸盐水泥掺量的增大先减小再增大,随掺合料掺量的增大先减小再增大.硅酸盐水泥-硫铝酸盐水泥复合体系的强度随着硅酸盐水泥的增加先减小后增大,硅酸盐水泥掺量为10%时,3d抗压强度减小10.67%;随着掺合料的增大而降低,掺合料掺量为40%时,矿粉、粉煤灰3 d抗压强度分别减小44.5%和47.9%.结论两种水泥复掺会缩短凝结时间,降低强度,水化产物减少,结构疏松;粉煤灰和矿粉的掺入会延长凝结时间,减小强度,水化产物减少.  相似文献   

3.
向聚合物水泥砂浆中掺入氧化铁颜料制备彩色聚合物水泥砂浆。研究了不同颜料及其掺量的变化对聚合物水泥砂浆力学性能、工作性能和粘结强度的影响;并借助扫描电镜(SEM)表征了彩色聚合物水泥砂浆的微观组织形貌。结果表明:颜料会一定程度降低聚合物砂浆的抗折、抗压强度;且颜料掺量为5%时,对聚合物砂浆的抗折、抗压强度影响显著;随着颜料掺量的逐渐增加,聚合物砂浆的抗折、抗压强度呈现先增加后平缓的趋势;聚合物砂浆的流动度和粘结强度随颜料掺量的增加而减小。SEM测试结果表明颜料一方面会包裹水泥颗粒,阻碍水泥水化,降低彩色聚合物砂浆的抗折、抗压强度;另一方面颜料能有效填充聚合物砂浆空隙,改善密实度,又提高彩色聚合物砂浆的抗折、抗压强度。  相似文献   

4.
脱硫石膏-石灰-粉煤灰体系胶凝性及水化机理   总被引:1,自引:0,他引:1  
通过在粉煤灰中掺加不同质量分数的脱硫石膏、石灰、NaOH、Na2SO4、煅烧脱硫石膏等研究体系的胶凝性能。结果表明:单掺脱硫石膏或煅烧脱硫石膏能提高体系的强度,最佳煅烧温度为800℃;加入石灰及NaOH碱性激发剂后,粉煤灰的活性得到激发,体系的胶凝性能明显提高。当脱硫石膏掺量的质量分数为7%、石灰为8%、NaOH为0.5%时,其28 d的抗折强度达4.19 MPa、抗压强度达16.70 MPa。在脱硫石膏、石灰、NaOH等的共同作用下,粉煤灰的水化反应加强,其主要产物为钙矾石、水化硅酸钙,体系的致密性及胶凝性能均增强。  相似文献   

5.
向聚合物水泥砂浆中掺入氧化铁颜料制备彩色聚合物水泥砂浆,研究了不同颜料及其掺量的变化对聚合物水泥砂浆力学性能、工作性能和粘结强度的影响,并借助扫描电镜(SEM)表征了彩色聚合物水泥砂浆的微观组织形貌。结果表明:颜料会一定程度降低聚合物砂浆的抗折、抗压强度,且颜料掺量为5%时,对聚合物砂浆的抗折、抗压强度影响显著,随着颜料掺量的逐渐增加,聚合物砂浆的抗折、抗压强度呈现先增加后平缓的趋势;聚合物砂浆的流动度和粘结强度随颜料掺量的增加而减小;SEM测试结果表明颜料一方面会包裹水泥颗粒,阻碍水泥水化,降低彩色聚合物砂浆的抗折、抗压强度,但另一方面颜料能有效填充聚合物砂浆空隙,改善密实度,提高聚合物砂浆的抗折、抗压强度。  相似文献   

6.
曹凤霞 《科技资讯》2009,(4):119-119,121
本文利用聚乙烯醇,甲基纤维素,糊精等有机高分子聚合物进行保水性研究,不仅研究了单类保水剂对粉刷石膏性质的影响,同时还研究了复合保水剂,得出了粉刷石膏复合保水剂的最佳配比,并对其保水机理进行了探讨。在此基础上,进行了复合增强型外加剂的研究,研究发现掺加氧化钙、硫酸铝可以有效弥补因掺加缓凝剂、保水剂带来的强度损失。采用现代测试方法,如扫描电镜对其微观结构进行了分析。  相似文献   

7.
通过水性环氧树脂改性水泥基彩色砂浆,制备一种力学性能优异且经济的彩色路面铺装材料,并通过抗折强度试验、抗压强度试验、粘结强度试验、抗滑性能试验、色彩耐久性试验研究了复合材料的最佳配合比和路用性能,通过SEM试验分析了水性环氧树脂和粉煤灰对水泥水化产物的影响。研究结果表明:粉煤灰掺量10%,水性环氧树脂掺量10%,改性砂浆力学性能最优;改性砂浆的BPN基本保持在55~80,抗滑性能良好;水性环氧树脂的掺入增加了水泥砂浆的粘结性、耐酸腐蚀性和后期抗折强度,但降低了其抗压强度;适量粉煤灰可以增加水泥砂浆的后期抗折和抗压强度。  相似文献   

8.
为改善脱硫石膏的性能,使其在建筑工程中应用更为广泛。通过对不同水泥掺量的石膏进行抗压强度和抗折强度试验,探究石膏强度与水泥掺量的关系;并通过扫描电镜实验(SEM)和X射线衍射实验(XRD)对单掺水泥石膏强度变化的微观机制进行分析。研究结果表明:水泥掺入脱硫石膏后可以一定程度上改善脱硫石膏的力学性能,提高脱硫石膏的强度。通过微观机理分析发现,水泥-石膏混合体系中会产生钙矾石,由于钙矾石的膨胀以及硅酸钙水化后生成的水化硅酸钙凝胶填充于石膏孔隙,使石膏趋于密实,从微观上解释了石膏强度的增长机制。但由于钙矾石的膨胀具有双重作用,因此存在水泥的最经济掺加量,实验研究确定脱硫石膏中水泥的最经济掺加量为10%。  相似文献   

9.
本文研究了硅灰石掺量对白色硅酸盐水泥标准稠度、凝结时间、水化各龄期强度等的影响,结果表明:随着硅灰石掺量的增加,水泥标准稠度略有增加,初凝时间延长约1小时,终凝时间延长0.5至1小时,均在国标规定的凝结时间范围内,水化各龄期抗折、抗压强度均随掺量的增加而降低,抗折强度的下降幅度大大小于同龄期抗压强度的下降幅度;当掺量小于10%时,对白水泥的物理力学性能影响不大。  相似文献   

10.
本文研究了α-半水石膏的掺量对建筑石膏标准稠度用水量、凝结时间、强度等宏观性能的影响,并且采用SEM和压汞法分析了复合胶凝材料的水化物的形貌和孔结构。结果表明:当α-半水石膏掺量从0%增加至20%时,标准稠度用水量降低了5.6%,初、终凝时间分别延长了2 min和7.5 min,抗折、抗压强度分别提高了58.3%和71.9%。随着α-半水石膏掺量的提升,针棒状水化产物数量减少,短柱状水化产物数量增加,石膏硬化体孔隙率降低,孔径趋于细化。  相似文献   

11.
纳米粒子和PVA纤维增强水泥基复合材料抗折性能研究   总被引:1,自引:1,他引:0  
通过抗折试验和抗折试验后小立方体抗压强度试验,探讨了纳米粒子掺量、PVA纤维掺量和石英砂粒径对水泥基复合材料抗折性能的影响。结果表明,纳米粒子掺量、PVA纤维体积掺量和石英砂粒径对水泥基复合材料抗折强度和抗折试验后小立方体抗压强度有较大影响。PVA纤维水泥基复合材料的抗折强度和小立方体抗压强度随着纳米SiO2掺量增加呈先增大后减小的趋势,当纳米SiO2掺量达到1.5%和1.0%时,抗折强度和抗压强度分别达到最大值;随着纤维体积掺量的增大,掺纳米SiO2水泥基复合材料抗折强度和小立方体抗压强度逐渐增大,但当PVA纤维体积掺量超过0.6%时,小立方体抗压强度有逐渐降低的趋势;随着石英砂粒径的减小,抗折强度和小立方体抗压强度逐渐降低,采用粒径a石英砂配制的水泥基复合材料具有更高的抗折强度和小立方体抗压强度。  相似文献   

12.
通过抗折试验和抗折试验后小立方体抗压强度试验,探讨了纳米粒子掺量、聚乙烯醇(PVA)纤维掺量和石英砂粒径对水泥基复合材料抗折性能的影响。结果表明,纳米粒子掺量、PVA纤维体积掺量和石英砂粒径对水泥基复合材料抗折强度和抗折试验后小立方体抗压强度有较大影响。PVA纤维水泥基复合材料的抗折强度和小立方体抗压强度随着纳米Si O_2掺量增加呈先增大后减小的趋势,当纳米Si O_2掺量达到1.5%和1.0%时,抗折强度和抗压强度分别达到最大值;随着纤维体积掺量的增大,掺纳米Si O_2水泥基复合材料抗折强度和小立方体抗压强度逐渐增大,但当PVA纤维体积掺量超过0.6%时,小立方体抗压强度有逐渐降低的趋势;随着石英砂粒径的减小,抗折强度和小立方体抗压强度逐渐降低,采用粒径a石英砂配制的水泥基复合材料具有更高的抗折强度和小立方体抗压强度。  相似文献   

13.
通过掺加纤维的方法可有效改善混凝土在寒冷或者低温地区的冻害情况.基于此,本文通过控制变量法设计了5组不同冻融循环作用次数和4种玄武岩纤维掺量下的正交试验,并以此探究了不同冻融循环作用和不同玄武岩纤维掺量下混凝土的力学性能.研究结果表明:1)掺加玄武岩纤维可有效提高混凝土抗压强度、抗折强度以及抗冻融性能,且当掺量为2 kg/m3时其强度提高幅度最大;2)随着玄武岩纤维掺量的增加,混凝土抗折强度提高率增大,而抗压强度提高率则先增大后减小;3)当玄武岩纤维掺量为2 kg/m3时,不同冻融循环作用下混凝土抗折强度降低率随着冻融次数的增加而增加,抗压强度降低率则不明显.  相似文献   

14.
针对目前膨胀聚苯板(EPS)外墙外保温系统用水泥砂浆粘结性差、柔韧性差等问题,用醋酸乙烯酯(VAc)与叔碳酸乙烯酯(VeoVa10)共聚乳胶粉对其进行改性。研究了乳胶粉用量对改性水泥砂浆力学性能的影响。结果表明,随着乳胶粉用量的增加,砂浆的粘结强度增加、抗折强度提高、抗压强度降低、柔韧性提高。通过正交试验研究了灰砂质量比、乳胶粉用量、保水剂用量等因素对改性水泥砂浆与EPS以及与基础砂浆粘结强度、抗折强度、抗压强度以及压折比的影响,得出改性水泥砂浆的最优配比为:水泥与石英砂的质量比1:1,乳胶粉质量分数4%,保水剂质量分数0.2%。  相似文献   

15.
以NaOH和KOH为激发剂,研究苛性碱掺量不同时,碱矿渣水泥砂浆(ASM)3、 7、 28、 90 d的抗压强度和抗折强度.采用压汞仪测试其净浆试件的孔结构;采用场发射扫描电子显微镜观察其砂浆试件的微观形貌.研究表明, ASM的抗压强度和抗折强度随着苛性碱掺量的增大,呈先上升后下降的变化规律.水胶比为0.4时, NaOH的最佳掺量(以Na_2O质量计)为矿渣质量的6%;KOH的最佳掺量(以K_2O质量计)为矿渣质量的4%.当激发剂掺量均为最佳掺量时, KOH作为激发剂的ASM的90 d龄期抗压强度和抗折强度分别比NaOH作为激发剂的ASM的90 d抗压强度和抗折强度高16.48%和12.65%.与采用NaOH作为激发剂的ASM相比,采用KOH作为激发剂的ASM的成本更低,性价比更高.  相似文献   

16.
用机制砂替代天然砂是目前缓解天然砂极度短缺的有效途径之一。为探索卵石、石灰岩机制砂应用潜力,本研究测试了两种机制砂的基本材料性能;并控制两种机制砂为相同且较低的石粉掺量,测试其对胶砂性能的影响;同时分别测试两种机制砂在不同石粉掺量下对胶砂性能的影响。结果表明:不同岩性机制砂的基本材料性能各不相同,其中石粉掺量和级配的差异较大;在石粉掺量相同的情况下,卵石机制砂砂浆的抗折强度与抗压强度均高于石灰岩机制砂,但二者相差不大,且随着龄期的增加增幅逐渐减小;随着石粉掺量的增加,两种机制砂的流动度、抗折强度和抗压强度都呈现先增加后下降的趋势,且在石粉掺量为5%时抗折强度达到峰值,均在石粉掺量为10%时抗压强度达到峰值,石粉掺量在5%~10%时为最佳。  相似文献   

17.
玄武岩纤维粉煤灰橡胶混凝土力学性能试验研究   总被引:1,自引:1,他引:0  
对玄武岩纤维橡胶混凝土设计了正交试验,对其力学性能进行测试并与普通混凝土对比,分析橡胶颗粒取代率、玄武岩纤维和粉煤灰掺量对混凝土28 d抗压、劈裂抗拉和抗折强度的影响。结果表明:橡胶颗粒取代率5%,玄武岩纤维掺量4 kg/m~3,粉煤灰掺量15%时,混凝土各项性能最佳。随橡胶颗粒取代率增加,混凝土抗压强度显著降低;而掺入玄武岩纤维使抗拉和抗折强度有较大幅度提升;最后从玄武岩纤维对混凝土类材料增韧阻裂机制进行了讨论。  相似文献   

18.
为了探究同种掺合料不同掺量以及不同掺合料同种掺量的泡沫轻质土的强度特性,选用矿粉、粉煤灰、矿渣和高岭土4种掺料的泡沫轻质土试件,进行了7d和28d无侧限抗压强度试验和直剪试验,分析了同种掺合料不同掺量及不同掺合料同种掺量的泡沫轻质土的无侧限抗压强度、抗剪强度及抗剪强度指标的变化规律,建立了泡沫轻质土抗压强度与粘聚力之间的关系。研究结果表明,随着掺合料在胶凝材料中比率的增加,材料抗压强度和抗剪强度均逐渐减小;粘聚力是泡沫轻质土抗剪强度的主要来源,其与抗压强度具有良好的线相关性;掺加矿粉和粉煤灰的泡沫轻质土表现出了较高的强度特性。  相似文献   

19.
采用硅酸根电迁移反应法致密化和表面涂覆砂浆,研究了水胶比、矿物掺和料、养护龄期和试件厚度等砂浆特性参数对被处理砂浆试件表面涂层厚度、抗压强度与抗折强度、电阻率的影响。结果表明:随着水胶比的减小与养护龄期的延长,砂浆试件生成的表面涂层增厚,抗压强度与抗折强度、电阻率提升增大;加入掺合料的砂浆试件形成的涂层厚度和电阻率大小顺序为硅粉矿粉无掺合料粉煤灰,掺硅粉与矿粉的砂浆试件电阻率出现的峰值时间早于无掺合料试件;硅粉砂浆试件的抗压强度、抗折强度增幅大于无掺合料砂浆,而粉煤灰砂浆试件抗压强度与抗折强度变化不明显;砂浆试件厚度对于硅酸根电迁移反应法处理的砂浆性能影响不明显。  相似文献   

20.
石膏对硫铝酸盐水泥水化特性的影响   总被引:1,自引:0,他引:1  
研究了无水石膏及脱硫石膏对硫铝酸盐水泥抗压强度、干燥收缩率、早期水化放热及浆体组成的影响.结果表明:石膏能加速硫铝酸盐水泥的早期水化,低掺量(≤20%,质量分数)时1 d抗压强度提高,干燥收缩有所降低;随石膏掺量增加,3 d和28 d抗压强度先增后减;掺量过高时硬化浆体的后期强度甚至会倒缩;抗压强度与钙矾石生成量并无直接关联,与铝胶量成正相关.脱硫石膏可替代无水石膏配制出更优良的硫铝酸盐水泥,具有广阔前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号