共查询到16条相似文献,搜索用时 62 毫秒
1.
为了解决当前电力系统巡检难度大、效率低、数据不足以支撑大规模训练的问题,提出一种基于孪生网络的小样本检测方法。首先,在Faster RCNN(faster region convolutional neural network)目标识别算法的框架下,搭建支持图片和查询图片共享的孪生网络模型;然后,利用改进的RPN(region proposal network)模块产生更高质量的proposals;最后,在检测头上对支持图片和查询图片的RoI(region of interest)进行关联匹配。结果表明,将算法应用于自主构建的EPD(electric power detection)数据集,在仅利用10张支持图片的情况下,就能实现对电力背景下鸟巢异物和绝缘子相关类别的检测,检测指标mAP达到18.92%。与其他算法相比,应用于电力行业目标检测的孪生网络小样本模型,在极端小样本情况下性能优良,同时具有更加轻量化的优势,可为电力检测新方法研究提供参考。 相似文献
2.
为了解决小样本目标检测算法中网络倾斜现象,小样本数据误检、漏检等问题,提出了一种基于小样本目标检测的配电线路异物识别方法。首先,通过在迁移训练中引入注意力机制,解决网络倾斜现象。其次,提出了在线难度样本选择的方法,解决小样本分类以及小尺寸异物误检和漏检问题。再次,采用内卷积解决传统卷积问题,提高异物检测精度。再次,提出新的锚框方案,解决小尺寸异物目标定位不准问题。最后,构建了一个配电线路异物数据集。该方法相较于之前先进算法在配电线路异物检测数据集上检测精度提高了4.4%,达到了98.6%,具有优异性能。 相似文献
3.
PVANet(performance vs accuracy network)卷积神经网络用于小目标检测的检测能力较弱.针对这一瓶颈问题,采用对PVANet网络的浅层特征提取层、深层特征提取层和HyperNet层(多层特征信息融合层)进行改进的措施,提出了一种适用于小目标物体检测的改进PVANet卷积神经网络模型,并在TT100K(Tsinghua-Tencent 100K)数据集上进行了交通标志检测算法验证实验.结果表明,所构建的卷积神经网络具有优秀的小目标物体检测能力,相应的交通标志检测算法可以实现较高的准确率. 相似文献
4.
近年来,基于孪生网络的目标跟踪算法由于在跟踪精度和跟踪效率之间能够实现良好的平衡而备受关注。通过对基于孪生网络的目标跟踪算法的文献进行归纳,对现有孪生网络目标跟踪算法进行了全面总结,对孪生网络的2个分支结构进行了讨论。首先,介绍了基于孪生网络目标跟踪的基本架构,重点分析了孪生网络中主干网络的优化,以及主干网络的目标特征提取问题。其次,对目标跟踪过程中的分类和回归2个任务展开讨论,将其分为有锚框和无锚框2大类来进行分析研究,通过实验对比,分析了算法的优缺点及其目标跟踪性能。最后,提出未来的研究重点:1)探索背景信息训练,实现场景中背景信息传播,充分利用背景信息实现目标定位。2)目标跟踪过程中,目标特征信息的更加丰富化和目标跟踪框的自适应变化。3)从帧与帧之间全局信息传播,到目标局部信息传播的研究,为准确定位跟踪目标提供支撑。 相似文献
5.
在高分辨率遥感图像目标检测中,受云雾、光照、复杂背景、噪声等因素影响,现有目标检测方法虚警率高、速度慢、精确度低.为此提出基于深度神经网络剪枝的两阶段目标检测(object detection based on deep pruning,ODDP)方法.首先,给出深度神经网络剪枝方法,基于深度神经网络剪枝分别提出自主学习区域提取网络算法与优化训练分类网络算法;然后,将上述两算法用于卷积神经网络,得到两阶段目标检测模型.实验结果表明,在NWPU VHR-10高分辨率遥感数据集上,相比现有目标检测方法,ODDP的检测速度和精度均有一定提升. 相似文献
6.
针对小样本学习中跨域迁移导致模型性能下降的问题,提出一种面向小样本SAR目标识别的轻量化适应策略(SAR-LAM)。该方法通过知识蒸馏预训练一个具有泛化性能的通用编码器,向其中嵌入一个只在少量目标域样本上进行训练的适应模块,而后将提取的特征映射到一个分辨性更高的空间内,最终以原型网络为基线对查询集样本进行分类。该适应策略以增加少量学习参数为代价,克服了数据分布差异导致模型迁移受限的困难,增强了模型在目标域提取特征的能力,在小样本条件下将SAR目标识别的准确率提升了至少1.93个百分点,较其他方法展现出一定的优越性。 相似文献
7.
林同灿;葛文翰;王俊峰 《四川大学学报(自然科学版)》2024,(3):9-20
异常流量分类是应对网络攻击,制定网络防御的前提.网络流量数据量大导致分析成本高,新型异常流量标记样本数量少导致分类难度大,小样本学习能有效应对这些问题.但目前小样本学习的方法仍然面对着复杂的模型或计算过程带来的效率低下、训练和测试样本分布偏差导致的监督崩溃问题.本文提出了一种基于对齐的原型网络,包含内部对齐和外部对齐模块.该方法首先基于原型网络在元学习框架下生成类别原型,其内部对齐模块通过支持集的预测损失来矫正原型在样本分布空间中的偏差,外部对齐模块通过对比原型和查询集中样本之间的相似性,将原型嵌入进查询集的分布空间,生成动态矫正后的类别原型,从而增强了原型在不同分布下的动态适应能力.基于对齐的原型网络在没有添加额外的参数和网络结构的情况下改进了模型的训练过程,保持快速检测的同时提升了分类性能.在CIC-FSIDS-2017和CSE-FS-IDS-2018数据集上的实验结果表明,本文方法的F1值为98%,相比于其他模型提高了3.37%~4.85%,运行时间降低了89.12%~93.14%.此外,该方法具有更强的鲁棒性,在更多的异常类别和更少的支持样本的情况下仍然能保持较好的性能. 相似文献
8.
王彦雅 《河北省科学院学报》2022,39(2):14-22
近年来,深度学习领域出现了许多优秀的算法,特别是Two-Stage(两阶段)目标检测模型R-CNN(Region-CNN)的产生,基本取代了传统目标检测算法,极大地提高了检测模型的综合性能。本文详细介绍了目前流行的Two-Stage算法,并对它们的流程、特点、效率以及优缺点等方面进行了综述,最后对目标检测领域存在的问题以及未来研究方向提出了建议。 相似文献
9.
目标识别和定位是计算机视觉领域研究的主要问题,图像分割、目标跟踪、目标行为分析等都是以图像中的目标检测为基础的.随着深度学习技术的发展,目标检测算法取得了巨大突破.在广泛调研相关文献的基础上,对目标检测算法进行分析和对比,分别研究基于区域提取的两阶段目标检测架构和直接位置回归的一阶段目标检测架构的本质特点和发展过程,并提出未来的发展方向. 相似文献
10.
为了解决文本图神经网络小样本文本分类精度较差的问题,设计了基于文本图神经网络的原型网络,采用预训练语言模型,利用文本级图神经网络为每个输入文本构建图并共享全局参数,将文本图神经网络的结果作为原型网络的输入,对未标注文本进行分类,并验证新模型在多个文本分类数据集上的有效性。实验结果表明,与需要大量标注文档的监督学习方法相比,所采用的方法未标注文本的分类精度提高了1%~3%,在多个文本分类数据集上验证了新模型性能先进,内存占用更少。研究结果可为解决小样本文本分类问题提供参考。 相似文献
11.
单样本学习的目的是利用一个包含大量训练样本的源类别数据集以及每个类别只包含一个训练样本的目标类别数据集来构建一种学习算法,使得算法能够对目标类别空间中的样本进行准确分类.已有的单样本学习算法主要是先利用源类别数据来训练模型,然后在测试时将目标类别训练数据作为支持集来实现对未标注样本的分类,因此在训练时没有有效地利用支持... 相似文献
12.
在公共安全检查领域中,研究毫米波图像目标检测的快速性和精准性的方法具有非常重要的实际应用价值。提出了基于Faster R-CNN深度学习的方法检测隐藏在人体上的危险物品。该方法将区域建议网络(region proposal network,RPN)和VGG16训练卷积神经网络模型相结合,接着通过在线难例挖掘(online hard example mining,OHEM)技术优化训练所提出的网络模型,从而构建了面向毫米波图像目标检测的深度卷积神经网络。实验结果证明所提的方法能高效地检测毫米波图像中的危险物品,并且目标检测的平均精度高达约94.66%,检测速度约为6帧/s,同时对毫米波安检系统的智能化发展有着极其重要的参考价值。 相似文献
13.
智能抓取机器人能够代替人类完成高强度工作,为实现物体的准确定位,提升机器人抓取的成功率,对基于感兴趣区域的机器人抓取系统进行研究。对深度相机进行标定,对深度卷积神经网络损失函数进行改进,使用焦点函数代替传统的交叉熵函数,训练模型,得到目标的类别、二维包络框中目标的像素坐标值与深度值等信息。利用手眼标定方法将深度传感器坐标转换到机械臂基坐标系下,依据相机成像原理完成物体的定位。通过机器人逆运动学求解关节角度,驱动机器人实现抓取。对实验过程进行分析,在aubo_i5机械臂上进行实验验证。实验结果表明,目标的识别定位误差较小,平均精度值提升了2.36%,抓取的平均成功率达到93.4%,较改进前提升了13.4%,能够满足机器人抓取的需求。 相似文献
14.
针对计算机生成图像(Computer Generated images, CG)与真实照片(Photograpgh, PG)识别率不高的问题,该文提出了一种改进的卷积神经网络方法来实现CG与PG的识别.该方法首先对识别问题进行卷积神经网络二分类建模,并选择VGG-19网络结构作为基础,建立不同的模型.该方法创新性地引入迁移学习,节省训练时间和大量计算资源,最后使用softmax分类器进行分类.实验结果表明,该文方法对PG图像的识别准确率达到92%.与其他方法比较,该文方法识别准确率最高,说明该文方法具有可行性与有效性. 相似文献
15.
神经网络及其研究进展 总被引:8,自引:0,他引:8
神经网络是人工智能应用的重要研究领域,因其出色的高度非线性映射能力、自组织和适应能力、记忆联想能力,已经成为机器学习研究的热点,本文讨论了神经网络的发展过程,理论依据以及神经网络的未来发展, 相似文献
16.
面对不断进步的图像编辑技术,发展相应的图像取证技术显得尤为重要.针对现有图像篡改检测技术中存在的可检测操作类型单一、鲁棒性不强、篡改区域定位不足等问题,提出一种基于卷积神经网络的多操作图像篡改检测方案.在该网络中,通过构造基于残差块的卷积流以提取操作特征.然后,设计一个多尺度特征融合模块,实现不同尺寸的操作特征融合.最后,将融合后的操作特征输入多分支预测模块进行篡改类型预测与定位,得到多操作检测结果.本文制作了多操作图像篡改数据集,对提出的网络模型进行训练和测试.实验结果表明,本文方案与主流的目标检测网络相比,能够更准确地对篡改区域进行定位,参数量更少,且对常见的图像后处理具有更好的鲁棒性. 相似文献