共查询到20条相似文献,搜索用时 93 毫秒
1.
随着当前计算机性能的不断提高,粒子滤波算法日益受到人们的关注,因为其在非线性、非高斯系统和状态滤波等方面具有独到的优势,也被广泛应用到运动目标跟踪研究当中。 相似文献
2.
《四川理工学院学报(自然科学版)》2015,(5):37-43
近几十年来,随着传感器、无线通信、信息处理、计算机等相关技术的不断发展和创新,基于无线传感器网络的应用越来越广泛,对无线传感器网络中的目标跟踪算法进行研究也具有极大的现实意义。在研究滤波算法的基础上,针对粒子滤波算法中的粒子退化问题,考虑无迹粒子滤波中的重要性函数充分利用了当前观测值但是运行时间长的问题,提出一种在有效粒子数满足一定条件下进行无迹变换的方法,将先验分布和通过无迹卡尔曼方法得到的重要性函数相结合作为新的提议分布以减缓粒子的退化。对于粒子滤波中的样本贫化问题,提出一种改进的分类重采样方法,当粒子的多样性不足时,在大权值粒子上加一个以噪声方差控制的扰动并给予小权值粒子一定的被选概率,以此增加粒子的多样性,并以C++为仿真工具对所提方法进行了试验。结果表明,改进的粒子滤波算法在估计精度上优于标准粒子滤波和无迹粒子滤波,而且运行时间比无迹粒子滤波减小一半多。 相似文献
3.
何佳 《科技情报开发与经济》2010,20(13):93-95
粒子滤波算法中通常采用先验转移概率代替重要性函数,由此重要性密度函数对后验函数的偏差将增大。将小波去噪应用到粒子滤波过程中,降低了偏差,提高了粒子算法的滤波精度,并将该算法应用到目标跟踪的过程中,通过仿真证实该方法能够提高粒子滤波精度。 相似文献
4.
基于相关滤波和卷积神经网络的目标跟踪算法 总被引:2,自引:0,他引:2
在目标跟踪系统中,获得目标的良好表征是确定目标跟踪性能的关键,因此提出一种基于相关滤波和卷积神经网络的目标跟踪算法;该算法首先在各视频场景内预先选定可清晰区分目标外观的参考区域块用以构造训练样本,并构建了两路不完全对称但权值共享的卷积神经网络;该卷积神经网络使得参考区域外目标的输出特征尽可能与参考区域内目标的输出特征相似,以便于获得参考区域内目标的良好表征,并在其中一路加入了相关滤波模块,实现了卷积网络与相关滤波的结合;实验结果验证了该算法的可行性。 相似文献
5.
首先介绍粒子滤波的基本理论,然后构建粒子滤波视频目标跟踪系统的状态模型和观测模型,进而根据状态模型和观测模型提出一种基于粒子滤波的视频目标跟踪算法,并通过实际的视频目标跟踪系统对算法进行实验分析,说明粒子滤波算法在视频目标跟踪中的优越性。 相似文献
6.
首先介绍粒子滤波的基本理论,然后构建粒子滤波视频目标跟踪系统的状态模型和观测模型,进而根据状态模型和观测模型提出一种基于粒子滤波的视频目标跟踪算法,并通过实际的视频目标跟踪系统对算法进行实验分析,说明粒子滤波算法在视频目标跟踪中的优越性. 相似文献
7.
为实现运动目标精确跟踪,克服跟踪过程中目标的非线性运动以及由目标形变、遮挡和光照等因素带来的影响,本文提出了一种改进的颜色粒子滤波方法. 算法从提高目标模型描述能力入手,首先对直方图加权函数进行了改进,使模型对区域特征描述更加合理;然后针对颜色直方图特征对光照明敏感、易受环境干扰等缺点,将目标由颜色特征空间映射到对光照稳定、抗几何失真能力强的局部熵特征空间,构建了颜色局部熵观测模型;同时设计了目标模板的自适应更新策略,当目标受到严重干扰的时候动态调节粒子数目. 实验结果表明相比传统的颜色粒子滤波算法,本文算法具有更好的鲁棒性,能够在存在遮挡、光照变化、非线性运动等情况下实现稳定跟踪. 相似文献
8.
粒子滤波算法应用于目标跟踪时,存在样本贫化和计算量大的问题,提出了一种基于智能优化粒子滤波算法.利用粒子群算法良好的局部寻优和全局寻优能力对重采样之后的粒子集进行操作,使粒子可以智能地合作起来,减轻样本贫化.实验结果表明,该算法实时性强,提高目标状态的估计精度,缩短了计算时间,其滤波性能优于常规粒子滤波算法. 相似文献
9.
王江涛 《吉林大学学报(理学版)》2015,53(5):999-1005
针对粒子滤波算法在复杂环境下粒子数量显著增加导致跟踪实时性下降的问题,提出一种将背景差分引入到粒子滤波算法中的新算法.利用背景差分对图像处理后得到检测结果,将分布在已被检测为前景像素点上的粒子定义为重要性粒子,增大了其权值.实验结果表明,该算法能使用较少的粒子实现较好的跟踪,提高了跟踪的实时性. 相似文献
10.
针对无线传感器网络环境下的机动目标跟踪问题,提出了一种描述目标机动加速度的目标状态空间模型,以此模型为基础开发出基于粒子滤波的单目标和多目标跟踪算法.基本思想是:在状态空间中通过寻找一组传播的随机样本来获得近似后验概率分布,并以样本均值代替积分运算,从而求得最小状态方差估计.仿真结果表明,所提算法可以较好地解决无线传感器网络环境下的机动目标跟踪问题,速度跟踪精度、机动加速度跟踪精度均较经典分布式粒子滤波算法分别提高20%、27%. 相似文献
11.
针对复杂水下环境中声探测传感器获得的运动目标信息具有不确定性和模糊性等问题,提出了基于声探测传感器特点的高斯粒子滤波水下目标跟踪方法.基于粒子滤波理论,采用一阶自回归模型作为运动目标状态转移的依据,设计了由目标区域的面积特征和不变矩特征相融合的观测模型,解决了目标跟踪中的粒子权值的选取问题,克服了传统粒子滤波重采样问题,提高了复杂环境下目标跟踪结果的准确率.展示了应用高斯粒子滤波实现水下目标跟踪的过程.试验结果表明,该方法具有较好的鲁棒性和实时性,是复杂水下环境中目标跟踪的一种高效可行的新方法. 相似文献
12.
13.
针对图像制导中信息的模糊性和不确定性问题,将多源信息融合技术应用于红外/可见光双模复合成像制导。采用方差比测量的方法将特征选择问题转化为一个两类判别问题,并引入自适应特征选择机制;通过计算目标和背景间不同特征分布直方图对应的似然比,在高维特征空间中选择4个判别性较好的特征区分目标和背景,根据bahattacharyya距离建立跟踪所需的观测似然函数,在粒子滤波的框架下实现了算法对单模序列图像中目标的跟踪;引入跟踪性能品质度量因子和加权融合策略衡量多信源下对目标的跟踪性能,实现对双模序列图像中目标的稳健跟踪,解决了单一信源在特定因素下跟踪性能不理想的缺陷,提高了算法性能。仿真实验结果验证了算法的有效性。 相似文献
14.
15.
针对采用颜色或边缘等特征的目标跟踪算法所存在的跟踪效果不稳定的问题,提出了一种基于极线约束尺度不变特征变换(SIFT)和粒子滤波的目标跟踪方法.该方法采用SIFT特征向量构建目标模型,引入极线约束改善目标匹配精度,采用粒子滤波算法获得SIFT特征向量的候选目标模型,利用似然函数计算目标模型与候选目标模型间的相似性.实验结果表明,该方法可解决目标与背景颜色相似时的跟踪失败问题,且对目标外形与位姿发生变化具有较好的适应能力. 相似文献
16.
非高斯条件下基于粒子滤波的目标跟踪 总被引:22,自引:1,他引:22
介绍了粒子滤波的基本思想和具体算法实现步骤,在给出的闪烁噪声统计模型基础上,将粒子滤波算法应用在雷达目标跟踪中,解决了闪烁噪声情况下的雷达目标跟踪问题.仿真结果表明,在满足高斯噪声条件下,扩展卡尔曼算法和粒子滤波算法跟踪性能相近,但若考虑雷达的闪烁噪声,则随着闪烁影响增强,扩展卡尔曼算法跟踪性能严重下降,而粒子滤波算法能继续保持较好的跟踪精度. 相似文献
17.
提出一种基于粒子滤波的红外目标跟踪的新算法. 用该算法对采样粒子进行优化,改进了重采样环节,在不影响跟踪准确率的条件下,提高了算法的速度. 实验结果表明,将此算法运用到瞳孔跟踪中,跟踪比较准确有效. 同时,将Hough变换应用到了瞳孔边缘的定位领域中,此算法有效改进了红外图像中眼睛瞳孔的跟踪效果. 相似文献
18.
提出了一种基于改进的粒子滤波的红外视频行人跟踪算法,实现了在传统粒子滤波算法的框架下,使用有向梯度直方图(histograms of oriented gradients,HOG)来描述跟踪目标的特征.算法在粒子权值和相似度计算中使用HOG,替代现有的颜色空间欧式距离测度,克服了红外视频中颜色信息缺失的困难.试验表明,与传统的粒子滤波算法相比,本文算法更能准确有效地跟踪复杂场景中的行人,提高了跟踪的鲁棒性. 相似文献
19.
杨元挺 《厦门大学学报(自然科学版)》2012,51(1):33-36
粒子滤波主要利用粒子集来表示概率,可以用在任何形式的状态空间模型上.提出了一种基于粒子滤波的灰度图像目标跟踪方法,粒子滤波适合各种形式状态空间模型.算法目标特征采用了灰度直方图、灰度梯度直方图对灰度图像序列进行跟踪.粒子滤波跟踪算法有状态转移和状态观测两大重要模型.利用高权值的粒子替代低权值粒子这样的粒子重采样来保证粒子集的健壮性,得到目标最终位置.利用Matlab进行仿真证明了本文算法的有效性和稳健性. 相似文献
20.
基于粒子滤波的仅有角测量的被动跟踪 总被引:1,自引:0,他引:1
基于粒子滤波,提出了仅有角测量无源被动跟踪的新解决方法.该方法采用“当前”统计模型,使用粒子滤波算法,融合了双站测量数据.在双站测量的被动跟踪试验中,仿真结果证实了该方法能有效跟踪高度机动的目标. 相似文献