首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
为了进一步提高孪生支持向量机(Twin support vector machine, TWSVM)的自然语言文本分类准确度,提出了一种改进的粒子群优化(Particle swarm optimization, PSO)算法,并采用改进的PSO算法对TWSVM核心参数进行优化。根据迭代次数来选择自适应权重从而对传统PSO算法进行改进,以防止收敛速度过快而错过全局最优解。采用Word2Vec对自然语言样本进行向量化处理,并通过PSO算法对TWSVM惩罚因子进行优化求解,解决因为惩罚因子设置不合理而造成自然语言文本分类准确率不高的问题。试验证明,通过合理设置PSO算法的速度权重初始值和稳定值,结合自适应递减权重策略,能够获得较高的惩罚因子优化性能,从而提高TWSVM的分类准确率,相比于常见自然语言文本分类算法,PSO-TWSVM的分类准确率更高,均方根误差值更低,在自然语言文本分类中的适用度高。  相似文献   

2.
石宏  张帅 《科学技术与工程》2012,12(32):8543-8546,8552
通过对铁谱磨粒类型进行识别,可有效监测机械装备磨损状态,有利于尽早发现和消除故障隐患。对粒子群优化算法进行改进,采用改进的粒子群算法同时优化支持向量机的惩罚参数和核函数参数,建立了自适应磨粒识别模型。通过对磨粒样本进行仿真实验,识别正确率达到98%,并与BP神经网络方法进行对比,结果表明了该方法的有效性及优越性。  相似文献   

3.
利用支持向量机SVM识别车辆类型   总被引:2,自引:0,他引:2       下载免费PDF全文
支持向量机(Support Vector Machine,SVM)分类方法在实际二类分类问题的应用中显示出良好的学习和泛化能力,已被广泛地应用于多类分类问题的研究.以车辆轮廓特征为对象,将二类分类支持向量机SVM应用于多类车辆类型的识别,并与其它分类器的分类结果进行了对比.通过9次交叉验证实验,结果表明SVM对车辆数据样本的测试准确率达到了85.59%,其分类性能优于其它分类器.  相似文献   

4.
最小二乘孪生支持向量机是一种有效的模式分类算法,然而每一个训练样本都对最终的决策平面有影响。如果训练集含有噪声或异常点,其会过度关注这些点,这可能导致最小二乘孪生支持向量机的判别能力较差。为了解决这个问题,受Fisher准则思想的启发,本文引入了双Fisher正则化项,并在此基础上提出了Fisher正则化的最小二乘孪生支持向量机。同时,在人工数据集和UCI数据集上验证了所提算法的有效性。  相似文献   

5.
为了解决孪生支持向量回归机的参数寻优问题,提出了一种基于灰狼优化算法的孪生支持向量回归机。该算法将均方根误差和平均绝对误差作为灰狼优化算法的适应度函数,借助灰狼优化算法的全局寻优能力,以目标范围内生成狼群的位置代表不同的孪生支持向量回归机参数取值,通过有限次数迭代和灰狼优化算法的位置更新机制得到孪生支持向量回归机的最优参数。实验结果表明,该算法能够找到合适的参数;与现有算法相比,该算法的预测性能更佳,寻优时间显著缩短。  相似文献   

6.
孙东  蒋刚  姜军  王坤朋 《科技信息》2009,(22):I0015-I0015,I0017
首先,应用背景差方法分割出运动人体轮廓,对外轮廓沿人体中线投影可以得到前后两个向量,合成1D向量作为步态特征。为有效抑制观察视角及鞋帽服饰等外界因素的干扰,克服目前常用整体模型步态识别算法的不足,提出将人体轮廓面积特征与支持向量机分类器相结合的识别方法。该方法在步态序列图像的人体轮廓进行提取和规格化,将轮廓图叠加后进行网格式划分,提取轮廓单元模块面积作为步态特征识别参量。使用南佛罗里达大学的步态数据库,分别采用线性、多项式和径向基内核函数对不同外界因素条件下的数据进行实验,该方法的正确识别率为82%~100%,且对视角及鞋帽服饰的干扰不敏感,具有更强的鲁棒性。实验表明人体轮廓面积更能反映步态特征,将该面积特征与SVM分类相结合可以获得更好的识别性能。  相似文献   

7.
8.
为了提高煤矸石分选的识别率,研究煤与煤矸石在同一场景下不同特征的数据差异;将煤与煤矸石各分为2类,从各类中抽取样本,经预处理后分析灰度特征、纹理特征、灰度分布直方图,以及不同阈值时各类样本灰度级为255的像素点频率;基于灰度特征与纹理特征,采用支持向量机对样本进行训练。结果表明,各类煤与煤矸石在灰度特征的灰度能量与灰度熵、纹理特征的能量与熵、灰度分布直方图特征以及阈值为55~70且灰度级为255时的频率存在明显差异,基于支持向量机与多种特征的煤矸石识别率最高可达96.4%。  相似文献   

9.
数学公式识别在拍照搜题、自动阅卷和题库建设等智慧教育任务中有着广泛的应用.由于这些应用中数学公式大多以图片的形式存在,因此识别图片中的数学公式成为智慧教育领域的重要研究问题之一.数学公式结构复杂,从图片中识别数学公式远比一般的光学符号识别要复杂得多.将公式识别分为字符分割、符号识别和公式重组这3个步骤:首先,综合运用投影和连通域方法将字符从图片中分割出来;其次,基于单个字符的区域像素数占总像素比例提取字符特征,建立监督学习模型识别字符;最后,利用每个字符在公式中出现的位置对数学公式进行重组.真实数据集上的实验结果表明,本文提出的数学公式识别方法准确率高达98.0%.  相似文献   

10.
模糊孪生支持向量机通过为每个训练样本赋予不同的模糊隶属度来构建2个最优非平行分类面,以便减少噪声或孤立点对非平行分类面的影响,进一步提高了支持向量机的性能.本文结合超松弛迭代法对模糊孪生支持向量机进行了研究,通过迭代技术求解凸二次规划问题中的拉格朗日乘子,减少了支持向量机的训练时间,在UCI标准数据集上分别对C-FTSVM和v-FTSVM进行了实验研究,并对使用传统求拉格朗日乘子的方法与超松弛迭代(SOR)的方法进行了对比,表明了使用超松弛迭代法不仅在时间性能上得到了提高,而且其分类正确率也优于传统的方法.  相似文献   

11.
基于混沌粒子群的SVM参数优化算法   总被引:1,自引:0,他引:1  
支持向量机的性能与核函数的参数及惩罚系数C有很大关系.利用Lozi’s映射的较好遍历性,在粒子群优化算法中引入Lozi’s映射的混沌思想,提出基于混沌粒子群优化算法的SVM参数优化方法.仿真实验表明,该算法能有效提高整个迭代搜索的收敛速度和精度,从而更好地优化SVM参数.  相似文献   

12.
支持向量机的性能与核函数的参数及惩罚系数C有很大关系.利用Lozi’s映射的较好遍历性,在粒子群优化算法中引入Lozi’s映射的混沌思想,提出基于混沌粒子群优化算法的SVM参数优化方法.仿真实验表明,该算法能有效提高整个迭代搜索的收敛速度和精度,从而更好地优化SVM参数.  相似文献   

13.
为了对人参价格进行预测,分析了影响人参价格因素,通过K-fold交叉验证方法,利用粒子群算法对支持向量机的惩罚参数c和ggamma值进行寻优,建立起2010年1月~2011年12月林下参的价格预测模型.利用粒子群算法优化惩罚参数c为3.6974,利用radial basis function核函数的SVM(Support Vector Machine)对预测集1的预测相关系数为97.316%.  相似文献   

14.
将小波函数引入支持向量机核函数,同时在支持向量机的学习算法上,引入了改进的粒子群优化算法,使得支持向量机的参数得到最优解,从而建立上市公司财务困境预警模型。实验结果表明,本文提出方法的预测准确率高于普通的小波支持向量机预警模型。  相似文献   

15.
为应对当前复杂非线性的宏观经济形势与电力消耗情况,本文提出了一种自适应粒子群算法改进的最小二乘支持向量机负荷预测模型。根据粒子群中粒子的成熟程度对其进行分类,对不同类别的粒子分别采取不同的位置更新方式,可以保持粒子种群多样性,避免造成局部最优。利用自适应粒子群算法优化最小二乘支持向量机的模型参数,经过实证分析能够一定程度提高模型的预测精度,可以为中长期负荷预测工作提供一些的参考。  相似文献   

16.
深入分析了线损率的影响因素,对现存的线损率预测方法进行了研究,采用粒子群算法对支持向量机进行参数寻优,建立基于粒子群优化的支持向量机预测模型对理论线损率进行预测仿真,为线损的降低和电能的高效利用提供保障;最后通过实例验证了该模型在理论线损率预测中的精度.  相似文献   

17.
睡眠呼吸暂停(sleep apnea, SA)是一种睡眠障碍疾病,严重影响睡眠质量和身体健康。为降低睡眠呼吸障碍检测的复杂度并提高准确率,提出了一种粒子群优化-支持向量机(particle swarm optimization-support vector machine, PSO-SVM)方法,通过心电信号实现对SA的准确检测。首先,将心电信号分段,并从中提取心率变异性;其次,实现特征提取与选择,包含心电信号RR间期的均值、标准差、均值标准差、差值均方的平方、心率变异性的信号总功率、低频段功率、高频段功率、瞬时中位频率、边际谱熵和能量谱熵等;最后,通过PSO-SVM分类算法进行睡眠呼吸暂停检测。结果表明,筛选10个特征对SA进行检测,利用Apnea-ECG数据库通过PSO-SVM的检测准确率为94.0%,提升了现有方法的检测性能。  相似文献   

18.
         下载免费PDF全文
The performance of the support vector machine models depends on a proper setting of its parameters to a great extent. A novel method of searching the optimal parameters of support vector machine based on chaos particle swarm optimization is proposed. A multifault classification model based on SVM optimized by chaos particle swarm optimization is established and applied to the fault diagnosis of rotating machines. The results show that the proposed fault classification model outperforms the neural network trained by chaos particle swarm optimization and least squares support vector machine, and the precision and reliability of the fault classification results can meet the requirement of practical application. It indicates that chaos particle swarm optimization is a suitable method for searching the optimal parameters of support vector machine.  相似文献   

19.
粒子群算法优化RBF-SVM沙尘暴预报模型参数   总被引:1,自引:0,他引:1  
为提高沙尘暴的预报准确率,针对目前已出现的RBF—SVM沙尘暴预报模型中的参数优化进行研究.利用基本粒子群优化算法(SPSO算法)中粒子速度及其位置与RBF—SVM模型中参数对相对应,对沙尘暴进行预报,为解决SPSO算法易陷入局部解的缺陷,提出了惯性权值自适应调节的改进粒子群算法(WPSO算法),并对沙尘暴RBF—SVM模型参数进行了优化.仿真结果表明,无论是SPSO算法,还是WPSO算法,在优化RBF—SVM沙尘暴预报模型参数方面都表现出了良好的性能,分别比已有的SVM方法的预报准确率提高了22.3%和45.3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号