共查询到20条相似文献,搜索用时 0 毫秒
1.
文章应用动力系统分歧理论、定性理论和Maple软件相结合的方法,研究了一类非线性Schrodinger-Boussinesq方程组的行波解,获得了该方程组在给定参数条件下的所有孤立波解、扭波解、反扭波解和周期波解,并给出了其解的表达式;所得结果推广和丰富了已有文献的相应结果,并且数值模拟验证了方法和结果的正确性. 相似文献
2.
应用动力系统分支理论对一类D rinfeld-Sokolov-W ilson方程进行研究,在参数空间中给定的区域内获得了系统在各种参数条件下可能存在的孤立行波解、扭波解、反扭波解及不可数无穷多光滑周期行波解. 相似文献
3.
黄彦 《云南民族大学学报(自然科学版)》2006,15(3):189-192
应用动力系统分支理论对一类耦合非线性微分方程进行研究,给出在各种参数条件下系统的相图分支及可能存在的孤立行波解、扭波解、反扭波解的精确公式. 相似文献
4.
文章应用平面动力系统理论研究了Klein-Gordon方程,光滑的孤立行波、周期波、扭子与反扭子波的存在性得到了证明。在一些简单条件下,给出了所有可能的精确的解析行波解。 相似文献
5.
耦合Schrdinger-Boussinesq方程组广泛应用于激光物理、等离子体物理等领域的一些具体物理过程,如Langmuir场的振幅、电磁波强度以及调幅的不稳定性等,本文通过推广的Jacobi椭圆函数展开法,借助Mathematica软件,求出了耦合Schrdinger-Boussinesq方程组一系列新的Jaocobi椭圆函数复合形式的精确解,部分解在极限情况下退化为孤立波解和三角函数解,丰富、简化和发展了已有的结果。 相似文献
6.
本文利用平面动力系统分支理论和Jacobi椭圆函数法,研究了一类广义Boussinesq方程.在不同的参数条件下,绘出了各种分支相图,利用这些相图,讨论了各种行波解的存在性.通过相图中的各种轨道,获得了孤立波,扭子波和周期波的精确解. 相似文献
7.
在新近提出的F-展开法的基础上,对F-展开法做了修改,导出了非线性耦合Schrd inger-Kdv方程组的由Jacobi椭圆函数表示的周期波解;当模数m→1,0时,可得到双曲函数解(包括孤波解). 相似文献
8.
9.
广义BBM方程的有界行波解 总被引:1,自引:2,他引:1
黎明 《四川师范大学学报(自然科学版)》2007,30(4):478-480
根据平面动力系统的分支理论,研究了广义BBM方程的周期波解、扭波和反扭波解,在不同的参数条件下,得到了广义BBM方程解的精确参数表示. 相似文献
10.
推广的BBM方程行波解 总被引:2,自引:1,他引:2
目的研究了推广的BBM方程的动力学行为和行波解。方法用动力系统的分支理论给出了行波系统在参数空间的所有可能相轨图。结果结果得到了方程的行波解存在的条件和一些特殊条件下的显式解。结论显然本文的方法在分析非线性波方程中有很好的效果,因此也可应用到其他非线性波方程中。 相似文献
11.
运用动力系统定性理论,提出一种分析非线性系统解的方法.并以Boussinesq方程为例,避免了求解的繁琐过程,得到解的几何特性.分析结果表明,在一定参数条件下,Boussinesq方程的相图中存在孤波、扭结波以及周期波. 相似文献
12.
13.
文章应用平面动力系统理论研究了Klein-Gordon方程,光滑的孤立行波、周期波、扭子与反扭子波的存在性得到了证明。在一些简单条件下,给出了所有可能的精确的解析行波解。 相似文献
14.
用动力系统分支理论研究了三阶非线性Schringer方程.证明了该方程存在光滑孤立波解、扭结和反扭结波解和光滑周期波解.在不同的参数条件下,给出了上述解存在的各类充分条件.求出了该方程的显式精确行波解. 相似文献
15.
根据齐次平衡原理,利用包络变换和直接拟设法研究Klein-Gordon-Schrdinger方程组的精确解;借助数学软件Maple,得到了亮孤立波解和暗孤立波解,并对解作出数值模拟图像. 相似文献
16.
17.
18.
曹瑞 《贵州大学学报(自然科学版)》2010,27(6):22-24,32
结合齐次平衡原理,运用F-展开方法,借助计算机代数系统Mathematica研究了一类Klein-Gordon-Zakharov方程组的一系列新精确周期解。在极限情况下,获得了多组孤立波解以及三角函数解。该方法也可以用来求解其它的非线性发展方程。 相似文献
19.
利用常微分方程定性理论分析了Kolmogorov-Petrovskii-Piskunov方程(KPP方程)和Zhiber-Shabat方程(ZS方程)的行波解.证明了KPP方程在一定的条件下存在扭波解,给出了ZS方程存在扭波解或反扭波解的充分条件. 相似文献
20.
《河南科技大学学报(自然科学版)》2014,(6)
利用(G'/G)-展开法求出了Klein-Gordon-Schrdinger方程组含参数的双曲函数形式孤波解及三角函数形式周期波解。文献中用齐次平衡原则与F展开法得到的孤波解与三角函数解是本文所得精确解的特殊情况。此外,结合刘氏定理又得出一种类型的孤波解——扭钟型孤波解。 相似文献