首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
设R是一个有单位元的结合环,I是R的补右零化子集,且n为正整数,若对任意x∈R\I,y∈R,有(xy)~(n+k)=x~(n+k)y~(n+k),k=0,1,2,则R是交换环.  相似文献   

2.
若环R的每一非零子环都含有R的一非零左理想,则称R为广义左Hamilton环,简记为GLH-环.本文给出了诣零广义左Hamilton环的元刻划,证明了定理1 诣零环R为GLH-环的充要条件是,(?)a∈R, a≠0,有n∈Z~+使na或na~2为R的非零绝对右零因子.同时给出了诣零GLH-环幂零的一条件,证明了定理2 R为2-扭自由的诣零GLH-环,令R_D={x∈R|P~(n(x))x=0}.若有正整数N,使对任何素数p及(?)~x∈R_p,有o(x)相似文献   

3.
本文主要讨论了含单位元的无零因子环内特征与交换的关系,得到如下主要结果: 定理1 设R是一个含单位元且无零因子的环,|R|≥p,且~a∈R,(a+e)~p=a~p+e,则charR=p。 定理2 设R是一个含单位元且无零因子的环,存在质数p>1,p≠CharR,使得~a∈R,(a+e)~p=a~p+e,则R为一个有限域。 定理3 假设1)R是一个特征为零的、含单位元、无零因子的环; 2)~x,y∈R,存在整数a_1,a_2,a_3,b_1,b_2,b_3使得:a_1xy~2+a_2yxy+a_3x~2y+b_1xyx+b_2yx~2+b_3y~2x=0则当R为可换时,(a_1+2b_3)(2a_1+a_2)(b_2+2a_3)(2b_1+b_2)≠0 反之,当此式左端任一因子不为零时,R为一个交换环。  相似文献   

4.
目的证明满足一定条件的结合环的交换性。方法在以往研究满足一定条件结合环之交换性的思路和方法的基础上,根据结合环的交换性定理,给出了通过环论用演绎法证明的方法。结果设R为结合环,如果R满足条件:(i)R有单位元1;(ii)R无幂零指数为2的非零幂零元;(iii)对任意x,y∈R,均有依赖于x,y的正整数n=n(x,y)使得xyn-ynx∈C,xyn+1-yn+1x∈C,此处C为环R的中心,则R为交换环。结论当结合环满足一定条件时具有交换性。  相似文献   

5.
自 G-Birkhoff 对交换的亚直不可约环得出了“无非零幂零元的亚直不可约环为域”的重要结论以后,一些文献相继研究了不可交换的亚直不可约环为体的条件。本文推广了[3]、[4]的结果,将[3]中定理1和定理2中的“R 的含于心 H的左理想满足降链条件”削弱为“R 的含于心 H 的左理想满足几乎降链条件”,将定理2中的“R 无非零幂零元”的条件换成“H 中无非零幂零元”,得出同样的结果。又将[4]的“H 中每一元素 a 满足 xa~(n+1)=a~n(x∈R,n∈z~+)的条件拓广成更一般情形:“H 中每一元素 a 均满足 ak=a~mxa~n,(x∈R,K∈Z~+,m,n∈Z~+或其中之一为0)而 m+n>  相似文献   

6.
讨论元素满足两个以上多项式关系之一的半素环的交换性,证明了:定理1 R为半素环,(?)x,y∈R,若x,y满足如下3个关系式之一,则R为交换环:(i)(xy)~m-(xy)~(m_1)(yx)~(m_2)∈Z(R);(ii)(xy)~5-(yx)~1∈Z(R);(iii)(xy)~(k_1)(yx)~(k_2)-(yx)~(k_2)(xy)~(k_1)∈Z(R).其中m,m_i,k_i,s及t与x,y有关且m_1+m_2,t,k_1+k_2为有界自然数.定理2 R为半素环,若R满足下述四个条件之一,则R可换:(1)(?)x,y∈R,x~(2m)y~(2n)-x~my~(2n)x~m∈Z(R)或x~sy~t-y~tx~s∈Z(R);(2)(?)x,y∈R,x~(2m)y~(2n)-y~nx~(2m)y~n∈Z(R)或x~sy~t-y~tx~s∈Z(R);(3)(?)x,y∈R,(yx)~n-yx~ny~(n-1)∈Z(R)或(xy)~n-x~ny~n∈Z(R);(4)(?)x,y∈R,(yx)~n-x~(n-1)y~nx∈Z(R)或(xy)~n-x~ny~n∈Z(R).其中m,n,s,t为自然数,而(1)及(2)中的m,n,s,t与x,y相关,(3)及(4)中n(>1)只与x(或y)有关.  相似文献   

7.
给出下列交换性定理1)设R为半质环,若对R中任意元x,y,存在整数m=m(y)≥0,n=n(y)≥0,m≥n,fx,y(t)∈t2Z[t]使得fx,y(xmy)-yxn∈Z(R)或fx,y(yxm)-yxn∈Z(R),则R为交换环.2)设R为k the半单纯环,若对R中任意x,y,存在整数m=m(x,y)≥n=n(x,y)≥0,多项式fx,y(t)∈t2Z[t]使得fx,y(xmy)-yxn∈Z(R)或fx,y(yxm)-yxn∈Z(R),则R为交换环.  相似文献   

8.
讨论了带有非零导子的结合环的交换性,证明了:定理1 R是特征非2的素环,f,g为R的两个非零导子,若有自然数n使得x~nfg(y)-fg(y)x~n∈Z(R) (?)x,y∈R则R可换.定理3 R为无零因子环,d为R的非零导子,若(?)x∈R,d~n_x∈Z(R)且R的特征不是(n+1)1的因子,则R可换.定理5 若素环R的特征不为2,U为R的非零Lie理想,且(?)u∈U有udu+duu∈Z(R),则u~2∈Z(R)且当u~2∈U时,U(?)Z(R).  相似文献   

9.
首先利用环理论方法证明:含有非平凡对称幂等元的对合素环R上的满射f强保持k-斜Jordan乘积,即满足_*{f(x),f(y)}_k=_*{x,y}_k=_*{x,_*{x,y}_(k-1)}对所有元x,y∈R成立,当且仅当f(x)=λx对所有x∈R成立,其中λ是R扩展中心的对称元且λ~(k+1)=1.这里,_*{x,y}=xy+yx~*是x与y的斜Jordan乘积.其次,给出该结果在算子代数上的应用.  相似文献   

10.
环的交换性条件   总被引:1,自引:0,他引:1  
设R是半质环,C是R的中心。本文证明,当R满足下述条件之一时为交换环: 1.对任意x,y∈R,均有(xy)~2 x~2y~2∈C; 2.对任意x,y∈R,均有(xy)~2 y~2x~2∈C; 3.有整数n>1,m>1,使对任意x,y∈R,均有[X~n,y)-[x,y~n]∈C,且R为(M~n-m)-扭自由的。 我们定义环R的m-超中心为T_m={r∈R|对任意x∈R,均有rx~m=x~mr}。本文证明,若R为半质环,则T_m即为R的中心。  相似文献   

11.
本文给出D—拟环成为结合环的几个条件,推广了Bell和Ligh等人的结果.  相似文献   

12.
本文讨论结合环R上的n阶全矩阵环R_n及多项式环R[x]的幂等性.记环R的幂等根为I_p(R),完全幂等根为E(R),主要结果如下:定理1 I_p(R_n)=(I_p(R))_n定理2 E(R_n)=(E(R))_n定理3 I_p(R〔x〕)=(I_p(R))[x]  相似文献   

13.
本文改进了[1]中定理1,定理2及文[2]中的一个结果,并给出半质环另外一个交换性条件.  相似文献   

14.
当k≥2,2kn+1=qh,q≡-1(mod2k),丢番图方程4/n=x-1十y-1+z-1有正整数解;当方程中n换以素数P,则P存疑的条件是Legendre符号有(P/3)=(P/5)=(P/7)=(P/11)=(P/13)=(P/17)=1.  相似文献   

15.
广义周期环     
给出了广义周期环的一些刻划,证明了半质的广义周期环或是交换环或是诣零环和P2-环的直和,并给出了一些特殊的广义周期环的刻划.  相似文献   

16.
目的研究不定方程x3±8=Dy2的可解性问题。方法利用初等及代数方法。结果设D是不含3和6k+1之形素因数的无平方因子正整数。当D>5时,如果D的素因数p都满足p≡1,3(mod 8)或者p≡5,7(mod 8),则方程x3±8=Dy2没有适合gcd(x,y)=1的正整数解(x,y)。结论部分地解决了该方程的可解性问题。即对某些特殊D,该方程无解。  相似文献   

17.
证明了不定方程x2+4n=y3(n∈N,x≡0(mod2),x,y∈Z),其中当n≥3时整数解仅有(x,y,n)=(0,4k,3k),(±2×8k,2×4k,3k+1),(±11×8k,5×4k,3k+1),k∈N+.  相似文献   

18.
A general version of the Morse-Sard theorem   总被引:1,自引:0,他引:1  
Let k, m, n be positive integers, and k≥2, a∈(0,1], 0<r<min{m,n} an integer, d=r (m-r)/(k a), and if f∈C^k,a(IR^m,IR^n),A=Cr(f)={x∈IR^m|rank(Df(x))≤r}, then f(A) is d-null. Thus the statement posed by Arthur Sard in 1965 can be completely solved when k≥2.  相似文献   

19.
关于丢番图方程x3±1=py2   总被引:2,自引:0,他引:2  
应用因子分解法、简单同余法以及前人的已知结果证明了:(1)设p是1个奇素数,则丢番图方程组x+1=3py21,x2-x+1=3y22,(y1,y2)=1,y1>0,y2>0,无正整数解x,p,y1,y2;(2)丢番图方程x3+1=py2(其中p≡-1(mod 3)为素数)仅有整数解(x,y)=(-1,0);(3)丢番图方程x3-1=py2(其中p≡-1(m od 3)为素数)仅有整数解(x,y)=(1,0).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号