共查询到20条相似文献,搜索用时 15 毫秒
1.
Systematic screen for human disease genes in yeast 总被引:19,自引:0,他引:19
Steinmetz LM Scharfe C Deutschbauer AM Mokranjac D Herman ZS Jones T Chu AM Giaever G Prokisch H Oefner PJ Davis RW 《Nature genetics》2002,31(4):400-404
High similarity between yeast and human mitochondria allows functional genomic study of Saccharomyces cerevisiae to be used to identify human genes involved in disease. So far, 102 heritable disorders have been attributed to defects in a quarter of the known nuclear-encoded mitochondrial proteins in humans. Many mitochondrial diseases remain unexplained, however, in part because only 40-60% of the presumed 700-1,000 proteins involved in mitochondrial function and biogenesis have been identified. Here we apply a systematic functional screen using the pre-existing whole-genome pool of yeast deletion mutants to identify mitochondrial proteins. Three million measurements of strain fitness identified 466 genes whose deletions impaired mitochondrial respiration, of which 265 were new. Our approach gave higher selection than other systematic approaches, including fivefold greater selection than gene expression analysis. To apply these advantages to human disorders involving mitochondria, human orthologs were identified and linked to heritable diseases using genomic map positions. 相似文献
2.
An integrative genomics approach to infer causal associations between gene expression and disease 总被引:2,自引:0,他引:2
Schadt EE Lamb J Yang X Zhu J Edwards S Guhathakurta D Sieberts SK Monks S Reitman M Zhang C Lum PY Leonardson A Thieringer R Metzger JM Yang L Castle J Zhu H Kash SF Drake TA Sachs A Lusis AJ 《Nature genetics》2005,37(7):710-717
3.
Haplotype tagging for the identification of common disease genes 总被引:61,自引:0,他引:61
Johnson GC Esposito L Barratt BJ Smith AN Heward J Di Genova G Ueda H Cordell HJ Eaves IA Dudbridge F Twells RC Payne F Hughes W Nutland S Stevens H Carr P Tuomilehto-Wolf E Tuomilehto J Gough SC Clayton DG Todd JA 《Nature genetics》2001,29(2):233-237
Genome-wide linkage disequilibrium (LD) mapping of common disease genes could be more powerful than linkage analysis if the appropriate density of polymorphic markers were known and if the genotyping effort and cost of producing such an LD map could be reduced. Although different metrics that measure the extent of LD have been evaluated, even the most recent studies have not placed significant emphasis on the most informative and cost-effective method of LD mapping-that based on haplotypes. We have scanned 135 kb of DNA from nine genes, genotyped 122 single-nucleotide polymorphisms (SNPs; approximately 184,000 genotypes) and determined the common haplotypes in a minimum of 384 European individuals for each gene. Here we show how knowledge of the common haplotypes and the SNPs that tag them can be used to (i) explain the often complex patterns of LD between adjacent markers, (ii) reduce genotyping significantly (in this case from 122 to 34 SNPs), (iii) scan the common variation of a gene sensitively and comprehensively and (iv) provide key fine-mapping data within regions of strong LD. Our results also indicate that, at least for the genes studied here, the current version of dbSNP would have been of limited utility for LD mapping because many common haplotypes could not be defined. A directed re-sequencing effort of the approximately 10% of the genome in or near genes in the major ethnic groups would aid the systematic evaluation of the common variant model of common disease. 相似文献
4.
Population genomics of human gene expression 总被引:1,自引:0,他引:1
Stranger BE Nica AC Forrest MS Dimas A Bird CP Beazley C Ingle CE Dunning M Flicek P Koller D Montgomery S Tavaré S Deloukas P Dermitzakis ET 《Nature genetics》2007,39(10):1217-1224
Genetic variation influences gene expression, and this variation in gene expression can be efficiently mapped to specific genomic regions and variants. Here we have used gene expression profiling of Epstein-Barr virus-transformed lymphoblastoid cell lines of all 270 individuals genotyped in the HapMap Consortium to elucidate the detailed features of genetic variation underlying gene expression variation. We find that gene expression is heritable and that differentiation between populations is in agreement with earlier small-scale studies. A detailed association analysis of over 2.2 million common SNPs per population (5% frequency in HapMap) with gene expression identified at least 1,348 genes with association signals in cis and at least 180 in trans. Replication in at least one independent population was achieved for 37% of cis signals and 15% of trans signals, respectively. Our results strongly support an abundance of cis-regulatory variation in the human genome. Detection of trans effects is limited but suggests that regulatory variation may be the key primary effect contributing to phenotypic variation in humans. We also explore several methodologies that improve the current state of analysis of gene expression variation. 相似文献
5.
Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease 总被引:22,自引:0,他引:22
Hubner N Wallace CA Zimdahl H Petretto E Schulz H Maciver F Mueller M Hummel O Monti J Zidek V Musilova A Kren V Causton H Game L Born G Schmidt S Müller A Cook SA Kurtz TW Whittaker J Pravenec M Aitman TJ 《Nature genetics》2005,37(3):243-253
Integration of genome-wide expression profiling with linkage analysis is a new approach to identifying genes underlying complex traits. We applied this approach to the regulation of gene expression in the BXH/HXB panel of rat recombinant inbred strains, one of the largest available rodent recombinant inbred panels and a leading resource for genetic analysis of the highly prevalent metabolic syndrome. In two tissues important to the pathogenesis of the metabolic syndrome, we mapped cis- and trans-regulatory control elements for expression of thousands of genes across the genome. Many of the most highly linked expression quantitative trait loci are regulated in cis, are inherited essentially as monogenic traits and are good candidate genes for previously mapped physiological quantitative trait loci in the rat. By comparative mapping we generated a data set of 73 candidate genes for hypertension that merit testing in human populations. Mining of this publicly available data set is expected to lead to new insights into the genes and regulatory pathways underlying the extensive range of metabolic and cardiovascular disease phenotypes that segregate in these recombinant inbred strains. 相似文献
6.
7.
8.
Lee JS Chu IS Mikaelyan A Calvisi DF Heo J Reddy JK Thorgeirsson SS 《Nature genetics》2004,36(12):1306-1311
Genetically modified mice have been extensively used for analyzing the molecular events that occur during tumor development. In many, if not all, cases, however, it is uncertain to what extent the mouse models reproduce features observed in the corresponding human conditions. This is due largely to lack of precise methods for direct and comprehensive comparison at the molecular level of the mouse and human tumors. Here we use global gene expression patterns of 68 hepatocellular carcinomas (HCCs) from seven different mouse models and 91 human HCCs from predefined subclasses to obtain direct comparison of the molecular features of mouse and human HCCs. Gene expression patterns in HCCs from Myc, E2f1 and Myc E2f1 transgenic mice were most similar to those of the better survival group of human HCCs, whereas the expression patterns in HCCs from Myc Tgfa transgenic mice and in diethylnitrosamine-induced mouse HCCs were most similar to those of the poorer survival group of human HCCs. Gene expression patterns in HCCs from Acox1(-/-) mice and in ciprofibrate-induced HCCs were least similar to those observed in human HCCs. We conclude that our approach can effectively identify appropriate mouse models to study human cancers. 相似文献
9.
10.
Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database 总被引:2,自引:0,他引:2
The past decade has witnessed hundreds of reports declaring or refuting genetic association with putative Alzheimer disease susceptibility genes. This wealth of information has become increasingly difficult to follow, much less interpret. We have created a publicly available, continuously updated database that comprehensively catalogs all genetic association studies in the field of Alzheimer disease (http://www.alzgene.org). We performed systematic meta-analyses for each polymorphism with available genotype data in at least three case-control samples. In addition to identifying the epsilon4 allele of APOE and related effects, we pinpointed over a dozen potential Alzheimer disease susceptibility genes (ACE, CHRNB2, CST3, ESR1, GAPDHS, IDE, MTHFR, NCSTN, PRNP, PSEN1, TF, TFAM and TNF) with statistically significant allelic summary odds ratios (ranging from 1.11-1.38 for risk alleles and 0.92-0.67 for protective alleles). Our database provides a powerful tool for deciphering the genetics of Alzheimer disease, and it serves as a potential model for tracking the most viable gene candidates in other genetically complex diseases. 相似文献
11.
Analysis of expressed sequence tags indicates 35,000 human genes 总被引:18,自引:0,他引:18
The number of protein-coding genes in an organism provides a useful first measure of its molecular complexity. Single-celled prokaryotes and eukaryotes typically have a few thousand genes; for example, Escherichia coli has 4,300 and Saccharomyces cerevisiae has 6,000. Evolution of multicellularity appears to have been accompanied by a several-fold increase in gene number, the invertebrates Caenorhabditis elegans and Drosophila melanogaster having 19,000 and 13,600 genes, respectively. Here we estimate the number of human genes by comparing a set of human expressed sequence tag (EST) contigs with human chromosome 22 and with a non-redundant set of mRNA sequences. The two comparisons give mutually consistent estimates of approximately 35,000 genes, substantially lower than most previous estimates. Evolution of the increased physiological complexity of vertebrates may therefore have depended more on the combinatorial diversification of regulatory networks or alternative splicing than on a substantial increase in gene number. 相似文献
12.
Prospects for whole-genome linkage disequilibrium mapping of common disease genes. 总被引:54,自引:0,他引:54
L Kruglyak 《Nature genetics》1999,22(2):139-144
Recently, attention has focused on the use of whole-genome linkage disequilibrium (LD) studies to map common disease genes. Such studies would employ a dense map of single nucleotide polymorphisms (SNPs) to detect association between a marker and disease. Construction of SNP maps is currently underway. An essential issue yet to be settled is the required marker density of such maps. Here, I use population simulations to estimate the extent of LD surrounding common gene variants in the general human population as well as in isolated populations. Two main conclusions emerge from these investigations. First, a useful level of LD is unlikely to extend beyond an average distance of roughly 3 kb in the general population, which implies that approximately 500,000 SNPs will be required for whole-genome studies. Second, the extent of LD is similar in isolated populations unless the founding bottleneck is very narrow or the frequency of the variant is low (<5%). 相似文献
13.
Delneri D Hoyle DC Gkargkas K Cross EJ Rash B Zeef L Leong HS Davey HM Hayes A Kell DB Griffith GW Oliver SG 《Nature genetics》2008,40(1):113-117
Using competition experiments in continuous cultures grown in different nutrient environments (glucose limited, ammonium limited, phosphate limited and white grape juice), we identified genes that show haploinsufficiency phenotypes (reduced growth rate when hemizygous) or haploproficiency phenotypes (increased growth rate when hemizygous). Haploproficient genes (815, 1,194, 733 and 654 in glucose-limited, ammonium-limited, phosphate-limited and white grape juice environments, respectively) frequently show that phenotype in a specific environmental context. For instance, genes encoding components of the ubiquitination pathway or the proteasome show haploproficiency in nitrogen-limited conditions where protein conservation may be beneficial. Haploinsufficiency is more likely to be observed in all environments, as is the case with genes determining polar growth of the cell. Haploproficient genes seem randomly distributed in the genome, whereas haploinsufficient genes (685, 765, 1,277 and 217 in glucose-limited, ammonium-limited, phosphate-limited and white grape juice environments, respectively) are over-represented on chromosome III. This chromosome determines a yeast's mating type, and the concentration of haploinsufficient genes there may be a mechanism to prevent its loss. 相似文献
14.
Characterization of single-nucleotide polymorphisms in coding regions of human genes. 总被引:46,自引:0,他引:46
M Cargill D Altshuler J Ireland P Sklar K Ardlie N Patil N Shaw C R Lane E P Lim N Kalyanaraman J Nemesh L Ziaugra L Friedland A Rolfe J Warrington R Lipshutz G Q Daley E S Lander 《Nature genetics》1999,22(3):231-238
A major goal in human genetics is to understand the role of common genetic variants in susceptibility to common diseases. This will require characterizing the nature of gene variation in human populations, assembling an extensive catalogue of single-nucleotide polymorphisms (SNPs) in candidate genes and performing association studies for particular diseases. At present, our knowledge of human gene variation remains rudimentary. Here we describe a systematic survey of SNPs in the coding regions of human genes. We identified SNPs in 106 genes relevant to cardiovascular disease, endocrinology and neuropsychiatry by screening an average of 114 independent alleles using 2 independent screening methods. To ensure high accuracy, all reported SNPs were confirmed by DNA sequencing. We identified 560 SNPs, including 392 coding-region SNPs (cSNPs) divided roughly equally between those causing synonymous and non-synonymous changes. We observed different rates of polymorphism among classes of sites within genes (non-coding, degenerate and non-degenerate) as well as between genes. The cSNPs most likely to influence disease, those that alter the amino acid sequence of the encoded protein, are found at a lower rate and with lower allele frequencies than silent substitutions. This likely reflects selection acting against deleterious alleles during human evolution. The lower allele frequency of missense cSNPs has implications for the compilation of a comprehensive catalogue, as well as for the subsequent application to disease association. 相似文献
15.
16.
Giardine B Borg J Higgs DR Peterson KR Philipsen S Maglott D Singleton BK Anstee DJ Basak AN Clark B Costa FC Faustino P Fedosyuk H Felice AE Francina A Galanello R Gallivan MV Georgitsi M Gibbons RJ Giordano PC Harteveld CL Hoyer JD Jarvis M Joly P Kanavakis E Kollia P Menzel S Miller W Moradkhani K Old J Papachatzopoulou A Papadakis MN Papadopoulos P Pavlovic S Perseu L Radmilovic M Riemer C Satta S Schrijver I Stojiljkovic M Thein SL Traeger-Synodinos J Tully R Wada T Waye JS Wiemann C 《Nature genetics》2011,43(4):295-301
We developed a series of interrelated locus-specific databases to store all published and unpublished genetic variation related to hemoglobinopathies and thalassemia and implemented microattribution to encourage submission of unpublished observations of genetic variation to these public repositories. A total of 1,941 unique genetic variants in 37 genes, encoding globins and other erythroid proteins, are currently documented in these databases, with reciprocal attribution of microcitations to data contributors. Our project provides the first example of implementing microattribution to incentivise submission of all known genetic variation in a defined system. It has demonstrably increased the reporting of human variants, leading to a comprehensive online resource for systematically describing human genetic variation in the globin genes and other genes contributing to hemoglobinopathies and thalassemias. The principles established here will serve as a model for other systems and for the analysis of other common and/or complex human genetic diseases. 相似文献
17.
18.
A literature network of human genes for high-throughput analysis of gene expression 总被引:27,自引:0,他引:27
We have carried out automated extraction of explicit and implicit biomedical knowledge from publicly available gene and text databases to create a gene-to-gene co-citation network for 13,712 named human genes by automated analysis of titles and abstracts in over 10 million MEDLINE records. The associations between genes have been annotated by linking genes to terms from the medical subject heading (MeSH) index and terms from the gene ontology (GO) database. The extracted database and accompanying web tools for gene-expression analysis have collectively been named 'PubGene'. We validated the extracted networks by three large-scale experiments showing that co-occurrence reflects biologically meaningful relationships, thus providing an approach to extract and structure known biology. We validated the applicability of the tools by analyzing two publicly available microarray data sets. 相似文献
19.
Bender A Krishnan KJ Morris CM Taylor GA Reeve AK Perry RH Jaros E Hersheson JS Betts J Klopstock T Taylor RW Turnbull DM 《Nature genetics》2006,38(5):515-517
Here we show that in substantia nigra neurons from both aged controls and individuals with Parkinson disease, there is a high level of deleted mitochondrial DNA (mtDNA) (controls, 43.3% +/- 9.3%; individuals with Parkinson disease, 52.3% +/- 9.3%). These mtDNA mutations are somatic, with different clonally expanded deletions in individual cells, and high levels of these mutations are associated with respiratory chain deficiency. Our studies suggest that somatic mtDNA deletions are important in the selective neuronal loss observed in brain aging and in Parkinson disease. 相似文献
20.
The identification of promoters and first exons has been one of the most difficult problems in gene-finding. We present a set of discriminant functions that can recognize structural and compositional features such as CpG islands, promoter regions and first splice-donor sites. We explain the implementation of the discriminant functions into a decision tree that constitutes a new program called FirstEF. By using different models to predict CpG-related and non-CpG-related first exons, we showed by cross-validation that the program could predict 86% of the first exons with 17% false positives. We also demonstrated the prediction accuracy of FirstEF at the genome level by applying it to the finished sequences of human chromosomes 21 and 22 as well as by comparing the predictions with the locations of the experimentally verified first exons. Finally, we present the analysis of the predicted first exons for all of the 24 chromosomes of the human genome. 相似文献