首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
一种基于局部特征融合的表情识别方法   总被引:1,自引:1,他引:1  
表情识别是人工智能和模式识别的研究热点,而特征融合方法则是表情识别中重要的技术方法之一.基于嘴部的Gabor小波特征和几何特征对表情识别有重要作用,提出一种仅用嘴部不同特征进行特征融合的表情识别方法.该方法将嘴部的Gabor小波特征和几何特征进行特征融合后再使用最近邻分类器分类.根据不同样本库、不同识别方法的对比实验结...  相似文献   

2.
针对人脸表情识别领域受噪声和遮挡等因素影响识别率不高的问题,结合局部和全局特征,提出一种基于面部表情的情感分析混合方法.首先,通过将梯度直方图(HOG)与复合局部三元模式(C-LTP)融合来进行特征提取;其次,将HOG和C-LTP提取的特征融合到单个特征向量中;最后,采用多类支持向量机分类器把特征向量进行情感分类;最后...  相似文献   

3.
基于改进的并行特征融合人脸表情识别   总被引:2,自引:1,他引:1  
基于信息融合理论和线性鉴别分析,提出了一种改进的并行特征融合人脸表情识别方法.该方法首先将不同表征下的人脸表情特征利用复向量组合起来,构成复特征向量,然后利用具有不同权重的最大散度差鉴别分析方法进行进一步的复特征提取.在不同样本库、不同类型特征融合下的实验结果表明,该方法在优化投影轴和避免小样本问题的同时得到了满意的识别结果.  相似文献   

4.
当前人脸检测系统主要使用的是基于主成分分析算法和神经网络技术,本文提出了识别不同特征点的另一种技术,所提出的识别系统用来实现特征提取、主成分分析和人工神经网络,即用特征脸和主成分分析算法进行人脸识别.在主成分分析算法中,通过识别初始人脸图像集得到特征向量和特征脸,然后这些人脸被投射到特征脸上以计算权重,这些权重建立人脸数据库以便通过神经网络进行人脸识别.测试结果表明,其准确率达82.1%,达到了理想效果.  相似文献   

5.
提出一种多特征与卷积神经网络相结合的人脸表情识别方法。先对人脸表情图像进行预处理,根据人脸面部\"三庭五眼\"的特征和人脸的几何模型对图像进行裁剪,采用双三次插值法对图像进行缩放。然后提取样本的局部方向模式、二维离散小波变换、Sobel算子三种特征。将这三种特征以三通道图像的形式输入卷积神经网络中进行自适应融合,融合后的特征通过Softmax层进行分类。在CK+数据库的识别率为99.51%,在RAF-DB的识别率为72.1%,识别率都有所提升,验证了所提方法的有效性。  相似文献   

6.
莫莉敏 《科技信息》2009,(33):68-69
本文提出了基于局部特征自适应加权2维主成分分析(2DPCA)表情识别方法。该方法采用分块来融合基于整体模板的分类方法和基于几何特征的分类方法,通过虚拟样本自适应地计算出不同特征对识别的不同贡献,并加权到分类器中。  相似文献   

7.
堆积降噪自动编码机是一种典型的深度学习模型,它能够刻画数据丰富的内在信息,具有较强的特征学习能力。基于主成分分析(principal component analysis,PCA)技术和堆积降噪自动编码机(stacked denoising autoen-coders,SDAE)模型,提出一种新的表情识别算法PCA+SDAE。该算法对人脸图片进行裁剪及归一化等预处理,采用主成分分析技术对人脸特征进行线性降维,再利用堆积降噪自动编码机逐层进行特征学习并同时实现对人脸表情数据的非线性降维,可以得到更好的、维度更低的表情特征,并据此进行表情分类。对PCA+SDAE算法的仿真测试实验结果表明,其综合性能比其他的基于深度学习模型的表情识别方法更好,同时与传统的非深度学习表情识别方法相比,它具有更高的表情识别正确率。  相似文献   

8.
针对传统Gabor变换在提取表情特征时,冗余较大、特征维数较高的不足,结合ASM自动特征定位技术,提出了一种基于特征点Gabor特征和ASM形状特征相融合的面部表情识别方法. 实验表明,两种特征的融合,可有效地利用特征点的局部纹理信息和脸部器官的整体形状信息,达到了更好的面部表情识别效果.  相似文献   

9.
在自然环境中各种因素的干扰下,人脸表情信息匹配的识别率受到严重影响,针对此问题,提出一种改进的基于VGGNet16(visual geometry group network16)的网络模型.在VGGNet16模型的侧方添加一系列的侧输出层,并在该侧输出层添加不同的卷积核,通过上采样和下采样方法连接侧输出层的上下2层,...  相似文献   

10.
基于彩色空间多特征融合的表情识别算法研究   总被引:1,自引:0,他引:1  
目前的人脸表情识别方法大多是在灰度图像上采用单一特征算子,如 Local Phase Quantization(LPQ),Local Binary Patterns(LBP),Histograms Of Oriented Gradients(HOG),Gabor等,进行分类识别,但这类方法在复杂光照条件下识别率并不理想。为取得较好的识别率,本文首次提出了基于彩色图像多特征融合的表情识别算法。该算法首先在不同彩色分量上分别提取LPQ、LBP、HOG及Gabor多种特征,然后对高维特征进行线形鉴别分析并采用最近邻法进行表情分类,最后对多特征分类结果采用Adaboost算法进行融合。本文算法在具有复杂光照条件的Multi-PIE人脸库上进行了验证,取得了88.30%的平均识别率。实验结果表明:相比于基于灰度图像的单一特征识别算法,本文提出的算法能较大幅度地提高人脸表情识别率。  相似文献   

11.
基于多元图形特征融合原理的降维方法研究   总被引:1,自引:0,他引:1  
降维是将高维模式映射到低维子空间的过程.在降维后的低维子空间进行分类往往能得到更好的效果.本文以高维数据为研究对象,采用多元描述图对高维数据进行可视化表达,采用多元图图形特征融合的方法对高维数据进行降维,用K邻分类器进行分类效果评价.与Fisher线性判别及其他一些常用非线性降维方法相比,本文所提方法在数据的可视化以及分类精度等方面均有较好效果.  相似文献   

12.
传统的基于向量的降维算法需要将图像数据进行向量化处理。然而,向量表示难以考虑数据各维度上的变化,容易丢失有效的结构信息和判别信息。为此,从数据的张量表示出发,将新近提出的稀疏保持投影方法(sparsity preserving projections,SPP)推广到张量空间中,提出了基于张量的稀疏保持投影降维方法。该方法可直接将图像数据作为张量目标进行运算,保留了数据的完整性以及数据的原始结构和判别信息。降维的同时保持了原始张量空间中数据样本的稀疏重构信息。人脸数据库的识别实验结果表明,基于张量的稀疏保持投影降维方法能有效地提高识别率。  相似文献   

13.
基于特征融合的三维人脸识别   总被引:2,自引:0,他引:2  
针对单一的人脸特征在识别中的局限性,将基于深度图像的全局特征和基于测地线的局部特征进行融合,以提高识别率.将三维人脸点云转换为深度图像后进行预处理,然后使用主成分分析法(PCA)找到一个低维的特征脸空间,依照最近邻法则将其与库集样本进行匹配,所得结果即为全局特征;将测试样本与模板人脸进行匹配,得到35个特征点,这些特征...  相似文献   

14.
针对以往手势识别研究中更关注识别率而弱化实时性的情况,首次将偏最小二乘降维思想引入手势识别领域,提出一种基于特征联合和偏最小二乘降维的手势识别方法。首先进行手势分割,在此基础上提取手势样本的梯度方向直方图和局部二值模式特征,并将二者进行联合。然后采用偏最小二乘法对手势联合特征进行降维,并将降维后的手势训练样本特征输入到支持向量机中进行分类训练。最后用训练好的支持向量机对降维后的手势测试样本进行识别测试。基于Jochen Triesch手势库及自制手势库的实验结果表明,同已有方法相比,本文所提方法在取得较高手势识别率的同时也取得了较好的实时性。  相似文献   

15.
提出基于多特征集成分类器的人脸表情识别新算法。新算法首先对预处理后的人脸表情图像通过3种不同的特征提取方法来提取不同类型的表情特征,然后对不同特征构造不同的分类器,最后构造一个基于神经网络的集成分类器模型,对这3个分类器的输出进行决策融合,从而实现人脸表情的最终识别。在JAFFE人脸表情数据库中的试验结果表明,所提算法的识别效果优于单个特征和单一的分类器。  相似文献   

16.
采用一种基于像素模式纹理特征(PPBTF)的人脸特征表示方法对人脸图像进行了特征提取.首先,将原始的灰度图像转化成能够表征纹理信息的模式图,并且通过在特征窗内统计每一模式的像素个数得到其中心像素的特征矢量,然后将由局部非负矩阵分解(LNMF)得到的基本方程作为模板进行模式匹配.同时,将Adaboost和SVM结合起来,用做表情识别的分类器.最后,通过基于Cohn-Kanade数据库的实验证明了以LNMF基函数作为模板的PPBTF对表情识别具有较高的判别能力,并由基于PIE图像库等其他图像库的实验进一步验证了PPBTF对光照不敏感的特性,充分说明所提出的人脸表征方法的有效性和鲁棒性.  相似文献   

17.
基于核函数因素分解模型的表情合成与识别   总被引:2,自引:0,他引:2  
人脸图像合成是新一代人机交互中的重要技术。传统的三维模型加生理模型的方法可以生成真实的人脸表情图像,但是其中的计算复杂度很高。该文提出了一种基于样本的方法,将不同的人和不同的表情看作影响人脸表情图像的两种变化因素,利用因素分解模型巧妙地进行人脸表情图像合成。同时,分析了因素分解模型获得的身份子空间和表情子空间的特点,提出了一种在子空间中利用余弦距离进行身份和表情识别的新思路。从实验结果来看,这里提出的方法可以仅利用一张训练集内、外的人脸图像合成出该人在不同表情下逼真的脸部表情图像,同时可以合成库内的人在新表情下的表情图像。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号