首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNA interference (RNAi) holds considerable promise as a therapeutic approach to silence disease-causing genes, particularly those that encode so-called 'non-druggable' targets that are not amenable to conventional therapeutics such as small molecules, proteins, or monoclonal antibodies. The main obstacle to achieving in vivo gene silencing by RNAi technologies is delivery. Here we show that chemically modified short interfering RNAs (siRNAs) can silence an endogenous gene encoding apolipoprotein B (apoB) after intravenous injection in mice. Administration of chemically modified siRNAs resulted in silencing of the apoB messenger RNA in liver and jejunum, decreased plasma levels of apoB protein, and reduced total cholesterol. We also show that these siRNAs can silence human apoB in a transgenic mouse model. In our in vivo study, the mechanism of action for the siRNAs was proven to occur through RNAi-mediated mRNA degradation, and we determined that cleavage of the apoB mRNA occurred specifically at the predicted site. These findings demonstrate the therapeutic potential of siRNAs for the treatment of disease.  相似文献   

2.
Apolipoprotein E controls cerebrovascular integrity via cyclophilin A   总被引:1,自引:0,他引:1  
Human apolipoprotein E has three isoforms: APOE2, APOE3 and APOE4. APOE4 is a major genetic risk factor for Alzheimer's disease and is associated with Down's syndrome dementia and poor neurological outcome after traumatic brain injury and haemorrhage. Neurovascular dysfunction is present in normal APOE4 carriers and individuals with APOE4-associated disorders. In mice, lack of Apoe leads to blood-brain barrier (BBB) breakdown, whereas APOE4 increases BBB susceptibility to injury. How APOE genotype affects brain microcirculation remains elusive. Using different APOE transgenic mice, including mice with ablation and/or inhibition of cyclophilin A (CypA), here we show that expression of APOE4 and lack of murine Apoe, but not APOE2 and APOE3, leads to BBB breakdown by activating a proinflammatory CypA-nuclear factor-κB-matrix-metalloproteinase-9 pathway in pericytes. This, in turn, leads to neuronal uptake of multiple blood-derived neurotoxic proteins, and microvascular and cerebral blood flow reductions. We show that the vascular defects in Apoe-deficient and APOE4-expressing mice precede neuronal dysfunction and can initiate neurodegenerative changes. Astrocyte-secreted APOE3, but not APOE4, suppressed the CypA-nuclear factor-κB-matrix-metalloproteinase-9 pathway in pericytes through a lipoprotein receptor. Our data suggest that CypA is a key target for treating APOE4-mediated neurovascular injury and the resulting neuronal dysfunction and degeneration.  相似文献   

3.
Daneman R  Zhou L  Kebede AA  Barres BA 《Nature》2010,468(7323):562-566
Vascular endothelial cells in the central nervous system (CNS) form a barrier that restricts the movement of molecules and ions between the blood and the brain. This blood-brain barrier (BBB) is crucial to ensure proper neuronal function and protect the CNS from injury and disease. Transplantation studies have demonstrated that the BBB is not intrinsic to the endothelial cells, but is induced by interactions with the neural cells. Owing to the close spatial relationship between astrocytes and endothelial cells, it has been hypothesized that astrocytes induce this critical barrier postnatally, but the timing of BBB formation has been controversial. Here we demonstrate that the barrier is formed during embryogenesis as endothelial cells invade the CNS and pericytes are recruited to the nascent vessels, over a week before astrocyte generation. Analysing mice with null and hypomorphic alleles of Pdgfrb, which have defects in pericyte generation, we demonstrate that pericytes are necessary for the formation of the BBB, and that absolute pericyte coverage determines relative vascular permeability. We demonstrate that pericytes regulate functional aspects of the BBB, including the formation of tight junctions and vesicle trafficking in CNS endothelial cells. Pericytes do not induce BBB-specific gene expression in CNS endothelial cells, but inhibit the expression of molecules that increase vascular permeability and CNS immune cell infiltration. These data indicate that pericyte-endothelial cell interactions are critical to regulate the BBB during development, and disruption of these interactions may lead to BBB dysfunction and neuroinflammation during CNS injury and disease.  相似文献   

4.
血脑屏障(blood-brain barrier, BBB)阻碍了具有治疗潜力的大分子化合物从外周组织进入脑内。为了寻找一种高效、快速通过BBB的靶向性载体,本实验通过罗丹明B标记的狂犬病毒糖蛋白衍生肽(RDP)注射入昆明小鼠体内,与15min、5h取大脑、脊髓及肝、肾等外周组织,冷冻切片观察其在体内的分布,并通过构建pET28a-RDP-luciferase重组质粒,结果发现融合蛋白能快速的穿过血脑屏障分布于中枢神经系统,为治疗中枢神经系统的药物开发提供新的思路。  相似文献   

5.
The design and development of safe and effective multifunctional siRNA delivery systems are critical for clinical application of RNAi therapeutics. Here we evaluated eight new spermine-based surfactant multifunctional carriers for siRNA delivery. These carriers complexed with siRNA forming stable compact nanoparticles with sizes around 100 nm. The multifunctional carriers mediated higher intracellular siRNA transfection than Lipofectamine-2000. The siRNA nanoparticles of the multifunctional carriers exhibited low cytotoxicity as shown by MTT assay. Three of the eight multifunctional carriers showed higher silencing efficiency than Lipofectamine-2000 in both U87-Luc cells and CHO-GFP cells. SKAHCO showed the highest siRNA delivery efficiency among the carriers. It resulted in 84.6±5.5% silencing of luciferase activity in U87-Luc cells, much higher than that (62.8± 3.4%) from Lipofectamine-2000. In conclusion, the spermine based multifunctional carriers are promising for highly efficient intracellular siRNA delivery.  相似文献   

6.
核酸是DNA和RNA的总称,能够参与生物体内基因表达的调控.然而,核酸分子极易被降解,如果直接通过口服或静脉注射给药,生物利用率极低,因此需要合适的载体进行核酸的递送.选取了生物兼容性较好的铁基金属-有机框架(MOF)MIL-101-NH2,分别负载单链DNA和siRNA来探究其细胞学行为.MIL-101-NH2能够有效递送单链DNA和siRNA进入细胞,且siRNA在细胞内能够发生溶酶体逃逸,并发挥基因沉默的效应.结果表明:基于MIL-101-NH2的纳米复合物是一种具有潜力的核酸递送与基因调控策略.  相似文献   

7.
Astrocytes induce blood-brain barrier properties in endothelial cells   总被引:53,自引:0,他引:53  
R C Janzer  M C Raff 《Nature》1987,325(6101):253-257
The highly impermeable tight junctions between endothelial cells forming the capillaries and venules in the central nervous system (CNS) of higher vertebrates are thought to be responsible for the blood-brain barrier that impedes the passive diffusion of solutes from the blood into the extracellular space of the CNS. The ability of CNS endothelial cells to form a blood-brain barrier is not intrinsic to these cells but instead is induced by the CNS environment: Stewart and Wiley demonstrated that when avascular tissue from 3-day-old quail brain is transplanted into the coelomic cavity of chick embryos, the chick endothelial cells that vascularize the quail brain grafts form a competent blood-brain barrier; on the other hand, when avascular embryonic quail coelomic grafts are transplanted into embryonic chick brain, the chick endothelial cells that invade the mesenchymal tissue grafts form leaky capillaries and venules. It is, however, not known which cells in the CNS are responsible for inducing endothelial cells to form the tight junctions characteristic of the blood-brain barrier. Astrocytes are the most likely candidates since their processes form endfeet that collectively surround CNS microvessels. In this report we provide direct evidence that astrocytes are capable of inducing blood-brain barrier properties in non-neural endothelial cells in vivo.  相似文献   

8.
RNAi-mediated gene silencing in non-human primates   总被引:2,自引:0,他引:2  
The opportunity to harness the RNA interference (RNAi) pathway to silence disease-causing genes holds great promise for the development of therapeutics directed against targets that are otherwise not addressable with current medicines. Although there are numerous examples of in vivo silencing of target genes after local delivery of small interfering RNAs (siRNAs), there remain only a few reports of RNAi-mediated silencing in response to systemic delivery of siRNA, and there are no reports of systemic efficacy in non-rodent species. Here we show that siRNAs, when delivered systemically in a liposomal formulation, can silence the disease target apolipoprotein B (ApoB) in non-human primates. APOB-specific siRNAs were encapsulated in stable nucleic acid lipid particles (SNALP) and administered by intravenous injection to cynomolgus monkeys at doses of 1 or 2.5 mg kg(-1). A single siRNA injection resulted in dose-dependent silencing of APOB messenger RNA expression in the liver 48 h after administration, with maximal silencing of >90%. This silencing effect occurred as a result of APOB mRNA cleavage at precisely the site predicted for the RNAi mechanism. Significant reductions in ApoB protein, serum cholesterol and low-density lipoprotein levels were observed as early as 24 h after treatment and lasted for 11 days at the highest siRNA dose, thus demonstrating an immediate, potent and lasting biological effect of siRNA treatment. Our findings show clinically relevant RNAi-mediated gene silencing in non-human primates, supporting RNAi therapeutics as a potential new class of drugs.  相似文献   

9.
A cationic dendritic polyfluorene (PFP) is examined as a siRNA delivery vector. This material was designed to facilitate the nucleic acid binding, encapsulation and efficient cellular uptake. PFP can effectively protect siRNA against nuclease degradation, which is necessary for gene carriers. PFP can be used for multidrug resistance gene-targeted siRNA delivery in doxorubicin (Dox)-resistant human breast cancer cells (MCF7) cells. As a siRNA transfection agent, PFP can efficiently achieve the reversal of drug resistance and enhance the drug sensitivity. These new features and capabilities represent a major step toward conjugated polymers that can function for therapeutic application.  相似文献   

10.
考察了呋喃二烯(FDE)脂质微球在小鼠体内的药动学及组织分布.制备FDE脂质微球并考察其粒径、Zeta电位、含药量等指标.小鼠尾静脉给药,采用HPLC法测定血浆和组织中的FDE浓度,评价药动学及组织分布特征.结果表明FDE脂质微球各项指标均符合注射剂要求.FDE在血浆中Cmax为(33.38±5.13)μg.mL-1,脑组织可检测到Cmax为(23.35±1.20)μg.g-1,说明FDE脂质微球可透过血脑屏障,对治疗脑部肿瘤及疾病具有潜在优势.  相似文献   

11.
12.
通过分子结构预测血脑屏障通透性是一个颇具挑战性的课题.建立了一个预测化合物分子的血脑屏障分配系数(logBB)的QSAR模型.该模型由表示分子大小、拓扑性质和脂水分配性质的QSAR参数组成.模型被用来预测52个化合物的血脑屏障分配系数,并通过测试集(从52个化合物种选取10个)进行验证,预测值-实验值的相关系数平方(R2)为0.974,均方差(MsE)为0.017 2.验证结果显示该模型大大优于传统使用的多元线性回归模型.因此,该模型可以用于预测药物分子和类似药物分子的血脑屏障通透性.  相似文献   

13.
14.
就DEHP(邻苯二甲酸二乙基己酯)的发育和神经毒性研究进展进行了概述.婴幼儿的DEHP摄入量远高于成年人,母体内的DEHP可能通过胎盘脂质及锌代谢影响胚胎发育,抑制多器官的生长发育并有致畸作用;胚胎期和新生期DEHP可能主要作用于睾丸间质细胞而影响生殖系统发育.DEHP不仅导致大鼠胚胎神经管发育畸形,还可通过血脑屏障影响脑内芳香化酶活性,抑制出生后海马脑区神经元密度,改变果蝇触角叶投射神经元突触前传递,这些作用有可能会改变动物成年后的神经行为.  相似文献   

15.
Kimoto H  Haga S  Sato K  Touhara K 《Nature》2005,437(7060):898-901
In mammals, social and reproductive behaviours are modulated by pheromones, which are chemical signals that convey information about sex and strain. The vomeronasal organ, located at the base of the nasal septum, is responsible for mediating pheromone information in mice. Two classes of putative pheromone receptor gene families, V1R and V2R, are expressed by vomeronasal sensory neurons in mutually segregated epithelial zones of the vomeronasal organ. Although numerous studies have suggested that pheromones originate from urine, direct recordings of behaving mice have shown that neuronal firing in the vomeronasal system is modulated by physical contact with the facial area. Here we identify a male-specific 7-kDa peptide secreted from the extraorbital lacrimal gland. This peptide, which we named exocrine gland-secreting peptide 1 (ESP1), is encoded by a gene from a previously unrecognized large family clustered in proximity to the class I major histocompatibility complex (MHC) region. ESP1 is secreted from the eyes and is transferred to the female vomeronasal organ, where it stimulates V2R-expressing vomeronasal sensory neurons and elicits an electrical response. Our results indicate that mice respond to sex-specific peptides released from exocrine glands through the vomeronasal system during direct contact.  相似文献   

16.
17.
RNAi作用机制及其应用研究进展   总被引:1,自引:0,他引:1  
在Dicer酶作用下,dsRNA形成siRNA,组装成具有活性的蛋白质复合物RISC,触发染色质固缩,DNA甲基化、基因沉默和干扰蛋白质合成等。RNAi基因沉默高效、特异和简捷等优点,为细胞内基因表达研究提供了新思路、新方法,为临床治疗遗传性基因扩增型疾病提供极具潜力的全新策略。文章就RNAi机制及其应用研究做一综述。  相似文献   

18.
以邻羟基苯乙酮为初始原料,通过缩合反应合成了2-{2-[2-(4-羟基苯基)乙烯基]苯并吡喃-4-}-丙二腈(BPAD-2),并通过1 H-NMR与MS确认结构;考察所制备探针的荧光光谱;通过荧光染色考察探针的Aβ结合标记;通过荧光成像考察探针的血脑屏障通过能力.结果表明BPAD-2的最大发射波长为658nm;BPAD-2荧光标记的Aβ呈亮红色;BPAD-2尾静脉注入正常小鼠后脑内显示荧光信号,10min内荧光强度达到最高,随着时间延长荧光强度逐渐减弱.说明苯并吡喃结构的BPAD-2具有近红外荧光性质,并显示良好的Aβ荧光标记和血脑屏障通过能力.  相似文献   

19.
由于目前尚无高效合成立体特异性磷硫代siRNAs(PS-siRNAs)的化学体系,本研究针对潜在的癌症治疗靶点PLK1,用a-磷硫代三磷酸腺苷(ATPaS)、a-磷硫代三磷酸胞苷(CTPaS)和a-磷硫代三磷酸尿苷(UTPaS)通过T7RNA聚合酶转录合成了部分磷硫代修饰的Rp-磷硫代siRNAs(Rp-PS-siRNAs),探究了nat-siRNAs和PS-siRNAs血清稳定性和基因沉默活性的差异性。发现酶促合成的磷硫代siRNA几乎不影响siRNA的基因沉默效率,但却显著提高siRNA的血清稳定性。因此,酶促转录合成的Rp-PS-siRNA可望作为siRNA的修饰形式,以延长siRNA的生物活性半衰期,使siRNA广泛应用于生物医学临床研究领域。  相似文献   

20.
灯盏花素对缺血性记忆障碍和血脑屏障的保护作用   总被引:4,自引:0,他引:4  
采用行为观察和生化检测相结合的方法,研究了灯盏花素对小鼠缺血性记忆障碍和血脑屏障的保护作用.结果表明:前脑重复缺血再灌注使小鼠的学习记忆能力显著下降(P〈0.01),同时伴随脑内髓过氧化物酶(MPO)活性上升(P〈0.01)、脑组织伊文思蓝(EB)及水含量升高(P〈0.01).灯盏花素治疗可提高缺血小鼠的学习记忆能力,并使脑组织EB含量下降(P〈0.05和P〈0.01)、水含量减少(P〈0.05),使血脑屏障损伤程度有所减轻;同时,伴随MPO活性的下降(P〈0.05和P〈0.01),炎症反应减弱.提示灯盏花素能减轻缺血再灌注引起的脑损伤,改善小鼠的学习记忆能力.该作用可能与灯盏花素提高脑组织抗血脑屏障损伤和抗炎症反应能力有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号