首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Circadian rhythm and light regulate opsin mRNA in rod photoreceptors   总被引:17,自引:0,他引:17  
J I Korenbrot  R D Fernald 《Nature》1989,337(6206):454-457
Disk membranes in the outer segment of rod photoreceptors are continuously renewed, being assembled at the outer segment base, displaced outward by new disks and eventually shed at the tip. In lower vertebrates, disk assembly occurs with a diurnal rhythm with 2-4% of the outer segment length produced daily. We have discovered that in toad and fish retinas the level of mRNA for opsin, the most abundant protein in rod disks, fluctuates with a daily rhythm and is regulated both by light and by a circadian oscillator. The mRNA level rises before light onset, remains high during the light phase of a diurnal cycle and decreases four to tenfold during the dark phase. In constant darkness, mRNA elevation occurs during subjective daytime. At night, rod opsin mRNA can be elevated by exposure to light.  相似文献   

2.
Control of Ca2+ in rod outer segment disks by light and cyclic GMP   总被引:4,自引:0,他引:4  
J S George  W A Hagins 《Nature》1983,303(5915):344-348
Photons absorbed in vertebrate rods and cones probably cause electrochemical changes at the photoreceptor plasma membrane by changing the cytoplasmic concentration of a diffusible transmitter substance, reducing the Na+ current flowing into the outer segment of the cell in the dark, to produce the observed membrane hyperpolarization that is the initial excitatory response. Cyclic GMP has been proposed as the transmitter because a light-activated cyclic GMP phosphodiesterase (PDE) has been found in rod disk membranes and because intracellularly injected cyclic GMP reduces rod membrane potentials. Free Ca2+ has also been proposed because increasing external [Ca2+] quickly and reversibly reduces the dark current and divalent cationophores increase the Ca2+ sensitivity. Ca2+ efflux from rod outer segments (ROS) of intact retinas occurs simultaneously with light responses. Vesicles prepared from ROS disk membranes become more permeable on illumination, releasing trapped ions or molecules, but intact outer segment disks have not previously been found to store sufficient Ca2+ in darkness and to release enough in light to meet the theoretical requirements for control of the dark current by varying cytoplasmic Ca2+ (refs 14-18). We now report experiments that show the required Ca2+ storage and release from rod disk membranes suspended in media containing high-energy phosphate esters and electrolytes approximating the cytoplasmic composition of live rod cells. Cyclic GMP stimulates Ca2+ uptake by ROS disks in such media.  相似文献   

3.
K W Yau  K Nakatani 《Nature》1985,317(6034):252-255
Recent experiments by Fesenko et al and ourselves have shown that excised membrane patches from retinal rod outer segments contain a cyclic GMP-sensitive conductance which has electrical properties similar to those of the light-sensitive conductance. This finding supports the notion that cGMP mediates phototransduction (see ref. 3) by directly modulating the light-sensitive conductance. However, some uncertainty remained about whether the patch experiments had discriminated completely between plasma and intracellular disk membranes; thus the cGMP response in an excised membrane could have resulted from contaminating disk membrane fragments, which are known to contain a cGMP-regulated conductance. Furthermore, the patch conductance has not yet been shown to be light-suppressible, an ultimate criterion for identity with the light-sensitive conductance. We now report experiments on a truncated rod outer segment preparation which resolved these issues. The results demonstrated that the cGMP-sensitive conductance was present in the plasma membrane of the outer segment, and that in the presence of GTP the conductance could be suppressed by a light flash. With added ATP, the effectiveness of the light flash was reduced and the suppression was more transient. The effects of both GTP and ATP were consistent with the known biochemistry. From the maximum current inducible by cGMP, we estimate that approximately 1% of the light-sensitive conductance is normally open in the dark; this would give an effective free cGMP concentration of a few micromolar in the intact outer segment in the dark.  相似文献   

4.
K W Yau  K Nakatani 《Nature》1985,313(6003):579-582
The response of retinal rod photoreceptors to light consists of a membrane hyperpolarization resulting from the decrease of a light-sensitive conductance in the outer segment. According to the calcium hypothesis, this conductance is blocked by a rise in intracellular free Ca triggered by light, a notion supported by the findings that an induced rise in internal Ca leads to blockage of the light-sensitive conductance and that light triggers a net Ca efflux from the outer segment via a Na-Ca exchanger, suggesting a rise in internal free Ca in the light. We have now measured both Ca influx and efflux through the outer segment plasma membrane and find that, contrary to the calcium hypothesis, light seems to decrease rather than increase the free Ca concentration in the rod outer segment. This result implies that Ca does not mediate visual excitation but it probably has a role in light adaptation.  相似文献   

5.
The apical transmembrane protein Crumbs is a central regulator of epithelial apical-basal polarity in Drosophila. Loss-of-function mutations in the human homologue of Crumbs, CRB1 (RP12), cause recessive retinal dystrophies, including retinitis pigmentosa. Here we show that Crumbs and CRB1 localize to corresponding subdomains of the photoreceptor apical plasma membrane: the stalk of the Drosophila photoreceptor and the inner segment of mammalian photoreceptors. These subdomains support the morphogenesis and orientation of the photosensitive membrane organelles: rhabdomeres and outer segments, respectively. Drosophila Crumbs is required to maintain zonula adherens integrity during the rapid apical membrane expansion that builds the rhabdomere. Crumbs also regulates stalk development by stabilizing the membrane-associated spectrin cytoskeleton, a function mechanistically distinct from its role in epithelial apical-basal polarity. We propose that Crumbs is a central component of a molecular scaffold that controls zonula adherens assembly and defines the stalk as an apical membrane subdomain. Defects in such scaffolds may contribute to human CRB1-related retinal dystrophies.  相似文献   

6.
7.
U B Kaupp  P P Schnetkamp  W Junge 《Nature》1980,286(5773):638-640
The hypothesis of Yoshikami and Hagins that calcium ions act as diffusible transmitter molecules between the photochemistry of rhodopsin and the subsequent electrical events at the outer plasma membrane of rods initiated many investigations on light-stimulated calcium release in vertebrate photoreceptor cells (see refs 2, 3). Although it not seems firmly established that light has some effect on the redistribution of calcium in various disk preparations, reconstituted systems and intact rod outer segments, the physiological significance remained unclear. We previously reported a rapid, light-triggered calcium release from binding sites at the disk membrane in the presence of calcium ionophore A23187 (refs 3, 8). However, there is no evidence for rapid calcium release into the cytosol in the absence of ionophore. On fragmentation of intact rod outer segments, calcium release due to a light-requlated change of calcium binding appeared almost completely abolished. We describe here experiments with sonicated rod outer segments in which the previously observed loss of the calcium release capacity has been prevented. Calcium release in sonicated disks in the presence of A23187 kinetically follows the metarhodopsin I/metarhodopsin II transition (tau 1/2 = 10 ms, activation energy EA = 34 kcal mol-1), suggesting that calcium release is triggered by this photochemical transition.  相似文献   

8.
9.
U Fuhrmann  E Bause  G Legler  H Ploegh 《Nature》1984,307(5953):755-758
Many secretory and membrane proteins are glycoproteins carrying asparagine-linked (N-linked) oligosaccharides. There are two types of N-linked glycans, referred to as high-mannose and complex type, respectively. Biosynthesis of N-linked glycans of the complex type proceeds via a high-mannose intermediate. After the initial transfer of a high-mannose oligosaccharide with the composition (Glc)3(Man)9(GlcNAc)2 from a lipid carrier to the nascent polypeptide chain, trimming reactions take place. Trimming glucosidases remove the glucose residues quantitatively and mannosidases IA/B and II can remove all but three mannose residues. After trimming, terminal sugars such as N-acetylglucosamine, galactose, sialic acid and fucose may be added and result in the conversion to a glycan of the complex type. Because suitable inhibitors were lacking, it was difficult to assess the importance of the trimming reactions for proper intracellular traffic, modification reactions other than the addition of terminal sugars, or as regulatory steps in glycoprotein processing. Here we describe the action of 1-deoxymannojirimycin (1,5-dideoxy-1,5-imino-D-mannitol, dMM; Fig. 1) on the biosynthesis of IgM and IgD. dMM is the mannose analogue of 1-deoxynojirimycin (dNM; Fig. 1), itself a glucosidase inhibitor. We present evidence that dMM is a mannosidase inhibitor. In vivo dMM inhibits the equivalent of the mannosidase IA/B activities and blocks conversion of high-mannose to complex oligosaccharides. It is the first such inhibitor to be reported. Interference with the biosynthetic pathway of N-linked glycans could prove to be a powerful way to manipulate carbohydrate structure in vivo.  相似文献   

10.
B K Jap  P J Walian  K Gehring 《Nature》1991,350(6314):167-170
Porins are a family of membrane channels commonly found in the outer membranes of Gram-negative bacteria where they serve as diffusional pathways for waste products, nutrients and antibiotics, and can also be receptors for bacteriophages. Porin channels have been shown in vitro to be voltage-gated. They can exhibit slight selectivities for certain solutes; for example PhoE porin has some selectivity for anionic and phosphate-containing compounds. Unlike many known membrane proteins which often contain long stretches of hydrophobic segments that are believed to traverse the membrane in a helical conformation, porins are found to have charged residues distributed almost uniformly along their primary sequences and have most of their secondary structure in a beta-sheet conformation. We have made crystalline patches of PhoE porin embedded in a lipid bilayer and have used these to determine the structure of PhoE porin by electron crystallography to a resolution of 6A. The basic structure consists of a trimer of elliptically shaped, cylindrical walls of beta sheet. Each cylinder has an inner lining, formed by parts of the polypeptide, that defines the channel size. The structure provides a clue as to how deletions of segments of polypeptide, which are found in certain mutants, can result in an actual increase in the channel size.  相似文献   

11.
R Feiler  W A Harris  K Kirschfeld  C Wehrhahn  C S Zuker 《Nature》1988,333(6175):737-741
Drosophila mutants transformed with a chimaeric gene that expresses the ocellar visual pigment in the major class of photoreceptor cells of the retina were used to investigate the properties of this minor pigment. The photoreceptor cells in which this opsin was misexpressed showed new spectral characteristics and physiology.  相似文献   

12.
J A Pollock  S Benzer 《Nature》1988,333(6175):779-782
Drosophila and other Dipteran flies have three different kinds of visual organs; in the adult a pair of compound eyes and three dorsal ocelli; and in the larva a pair of internal photoreceptor organs. They develop in distinct ways, yet have certain features in common. All three organs use retinal-derived chromophores, coupled to distinct opsins, to provide a diversity of spectral sensitivities. Four opsin genes have been identified thus far in Drosophila; Rh1, Rh2, Rh3 and Rh4 (refs 6-11). We have used in situ hybridization to study the messenger RNAs expressed by these four opsin genes in all three visual organs. Rh1, Rh3 and Rh4 are already known to be expressed in different subsets of cells in the compound eye. We found that, in contrast, opsin Rh2 is the predominant opsin expressed in the ocelli. Opsin Rh1 is known to be expressed in the larval photoreceptor. We found that Rh3 and Rh4 are as well, but not Rh2. The ocellar-specific gene expression of Rh2 is of particular interest for its possible bearing on the function of the ocellus.  相似文献   

13.
Vertebrate rod photoreceptors hyperpolarize when illuminated, due to the closing of cation-selective channels in the plasma membrane. The mechanism controlling the opening and closing of these channels is still unclear, however. Both 3',5'-cyclic GMP and Ca2+ ions have been proposed as intracellular messengers for coupling the light activation of the photopigment rhodopsin to channel activity and thus modulating light-sensitive conductance. We have now studied the effects of possible conductance modulators on excised 'inside-out' patches from the plasma membrane of the rod outer segment (ROS), and have found that cyclic GMP acting from the inner side of the membrane markedly increases the cationic conductance of such patches (EC50 30 microM cyclic GMP) in a reversible manner, while Ca2+ is ineffective. The cyclic GMP-induced conductance increase occurs in the absence of nucleoside triphosphates and, hence, is not mediated by protein phosphorylation, but seems rather to result from a direct action of cyclic GMP on the membrane. The effect of cyclic GMP is highly specific; cyclic AMP and 2',3'-cyclic GMP are completely ineffective when applied in millimolar concentrations. We were unable to recognize discrete current steps that might represent single-channel openings and closings modulated by cyclic GMP. Analysis of membrane current noise shows the elementary event to be 3 fA with 110 mM Na+ on both sides of the membrane at a membrane potential of -30 mV. If the initial event is assumed to be the closure of a single cyclic GMP-sensitive channel, this value corresponds to a single-channel conductance of 100 fS. It seems probable that the cyclic GMP-sensitive conductance is responsible for the generation of the rod photoresponse in vivo.  相似文献   

14.
K W Koch  L Stryer 《Nature》1988,334(6177):64-66
Visual excitation in retinal rod cells is mediated by a cascade that leads to the amplified hydrolysis of cyclic GMP (cGMP) and the consequent closure of cGMP-activated cation-specific channels in the plasma membrane. Recovery of the dark state requires the resynthesis of cGMP, which is catalysed by guanylate cyclase, an axoneme-associated enzyme. The lowering of the cytosolic calcium concentration (Cai) following illumination is thought to be important in stimulating cyclase activity. This hypothesis is supported by the finding that the cGMP content of rod outer segments increases several-fold when Cai is lowered to less than 10 nM. It is evident that cGMP and Cai levels are reciprocally controlled by negative feedback. Guanylate cyclase from toad ROS is strongly stimulated when the calcium level is lowered from 10 microM to 10 nM, but only if they are excited by light. We show here that the guanylate cyclase activity of unilluminated bovine rod outer segments increases markedly (5 to 20-fold) when the calcium level is lowered from 200 nM to 50 nM. This steep dependence of guanylate cyclase activity on the calcium level in the physiological range has a Hill coefficient of 3.9. Stimulation at low calcium levels is mediated by a protein that can be released from the outer segment membranes by washing with a low salt buffer. Calcium sensitivity is partially restored by adding the soluble extract back to the washed membranes. The highly cooperative activation of guanylate cyclase by the light-induced lowering of Cai is likely to be a key event in restoring the dark current after excitation.  相似文献   

15.
Mitochondria contain translocases for the transport of precursor proteins across their outer and inner membranes. It has been assumed that the translocases also mediate the sorting of proteins to their submitochondrial destination. Here we show that the mitochondrial outer membrane contains a separate sorting and assembly machinery (SAM) that operates after the translocase of the outer membrane (TOM). Mas37 forms a constituent of the SAM complex. The central role of the SAM complex in the sorting and assembly pathway of outer membrane proteins explains the various pleiotropic functions that have been ascribed to Mas37 (refs 4, 11-15). These results suggest that the TOM complex, which can transport all kinds of mitochondrial precursor proteins, is not sufficient for the correct integration of outer membrane proteins with a complicated topology, and instead transfers precursor proteins to the SAM complex.  相似文献   

16.
Cyclic GMP-sensitive conductance of retinal rods consists of aqueous pores   总被引:31,自引:0,他引:31  
A L Zimmerman  D A Baylor 《Nature》1986,321(6065):70-72
The surface membrane of retinal rod and cone outer segments contains a cation-selective conductance which is activated by 3',5'-cyclic guanosine monophosphate (cGMP). Reduction of this conductance by a light-induced decrease in the cytoplasmic concentration of cGMP appears to generate the electrical response to light, but little is known about the molecular nature of the conductance. The estimated unitary conductance is so small that ion transport might occur via either a carrier or a pore mechanism. Here we report recordings of cGMP-activated single-channel currents from excised rod outer segment patches bathed in solutions low in divalent cations. Two elementary conductances, of approximately 24 and 8 pS, were observed. These conductances are too large to be accounted for by carrier transport, indicating that the cGMP-activated conductance consists of aqueous pores. The dependence of the channel activation on the concentration of cGMP suggests that opening of the pore is triggered by cooperative binding of at least three cGMP molecules.  相似文献   

17.
Interferon treatment inhibits glycosylation of a viral protein   总被引:4,自引:0,他引:4  
  相似文献   

18.
N-linked glycosylation of proteins in eukaryotic cells follows a highly conserved pathway. The tetradecasaccharide substrate (Glc3Man9GlcNAc2) is first assembled at the membrane of the endoplasmic reticulum (ER) as a dolichylpyrophosphate (Dol-PP)-linked intermediate, and then transferred to nascent polypeptide chains in the lumen of the ER. The assembly of the oligosaccharide starts on the cytoplasmic side of the ER membrane with the synthesis of a Man5GlcNAc2-PP-Dol intermediate. This lipid-linked intermediate is then translocated across the membrane so that the oligosaccharides face the lumen of the ER, where the biosynthesis of Glc3Man9GlcNAc2-PP-Dol continues to completion. The fully assembled oligosaccharide is transferred to selected asparagine residues of target proteins. The transmembrane movement of lipid-linked Man5GlcNAc2 oligosaccharide is of fundamental importance in this biosynthetic pathway, and similar processes involving phospholipids and glycolipids are essential in all types of cells. The process is predicted to be catalysed by proteins, termed flippases, which to date have remained elusive. Here we provide evidence that yeast RFT1 encodes an evolutionarily conserved protein required for the translocation of Man5GlcNAc2-PP-Dol from the cytoplasmic to the lumenal leaflet of the ER membrane.  相似文献   

19.
J E Rothman  H F Lodish 《Nature》1977,269(5631):775-780
Studies of the synthesis and incorporation of the vesicular stomatitis virus glycoprotein into membranes in a synchronised cell-free system demonstrate a tight coupling between polypeptide synthesis and membrane insertion, as a result of which the nascent chain crosses the membrane. The studies reveal a surprisingly precise sequence by which the nascent chain of this membrane glycoprotein is glycosylated in two steps. These findings have important implications for the mechanisms of membrane assembly.  相似文献   

20.
Melanopsin has been proposed to be the photopigment of the intrinsically photosensitive retinal ganglion cells (ipRGCs); these photoreceptors of the mammalian eye drive circadian and pupillary adjustments through direct projections to the brain. Their action spectrum (lambda(max) approximately 480 nm) implicates an opsin and melanopsin is the only opsin known to exist in these cells. Melanopsin is required for ipRGC photosensitivity and for behavioural photoresponses that survive disrupted rod and cone function. Heterologously expressed melanopsin apparently binds retinaldehyde and mediates photic activation of G proteins. However, its amino-acid sequence differs from vertebrate photosensory opsins and some have suggested that melanopsin may be a photoisomerase, providing retinoid chromophore to an unidentified opsin. To determine whether melanopsin is a functional sensory photopigment, here we transiently expressed it in HEK293 cells that stably expressed TRPC3 channels. Light triggered a membrane depolarization in these cells and increased intracellular calcium. The light response resembled that of ipRGCs, with almost identical spectral sensitivity (lambda(max) approximately 479 nm). The phototransduction pathway included Gq or a related G protein, phospholipase C and TRPC3 channels. We conclude that mammalian melanopsin is a functional sensory photopigment, that it is the photopigment of ganglion-cell photoreceptors, and that these photoreceptors may use an invertebrate-like phototransduction cascade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号