首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
NO与OH自由基反应机理的理论研究   总被引:1,自引:5,他引:1  
用MP2方法,在6-311 G(d,p)基组水平上研究了NO与OH自由基反应的微观机理,全参数优化了反应过程中各反应物、中间体、过渡态和产物的几何构型,考虑零点能校正,同时采用QCISD(T)/6-311 G(d,p)方法得到了更为精确的能量.振动分析结果证实了中间体和过渡态的真实性,IRC计算结果进一步证实了过渡态的真实性.从对NO与OH自由基反应机理的研究结果看,NO与OH自由基反应为双通道反应过程,分别为:NO OH→IM1→TS1→NO2 H,NO OH→IM1→TS2→IM2(HNO2).研究发现,通道NO OH→IM1→TS2→IM2(HNO2)是NO与OH自由基反应的主反应通道,其主要产物是HNO2.  相似文献   

2.
CH自由基与HNCO反应机理的理论研究   总被引:2,自引:1,他引:2  
用MP2方法,在6-311++G(d,p)基组水平上研究了CH自由基与HNCO的反应机理.全参数优化了反应过程中反应物、中间体、过渡态和产物,选用更高水平的QCISD(T)/6-311++G(d,p)和G3方法计算了相应的能量.研究结果表明:CH自由基与HNCO反应存在4条反应通道,分别为(1)CH+HNCO→IM1→TS1→CH2+NCO;(2)CH+HNCO→IM1→TS2→IM2→TS3→H2CN+CO;(3)CH+HNCO→IM(cis)→TS(cis)→HCNH+CO;(4)CH+HNCO→IM(cis)→TS(cis-trans)→IM(trans)→TS(trans)→HCNH+CO.其中通道(3)具有相对较低的活化能,且为放热通道,是反应的主要通道.  相似文献   

3.
采用量子化学密度泛函理论与从头算分子轨道理论研究了CH自由基与NO反应的机理,在B3LYP/6-311++G(d,p)水平上优化了反应过程中反应物、中间体、过渡态和产物的几何构型,并在G3水平上计算了它们的能量,同时对它们进行了振动分析,以确定中间体和过渡态的真实性.从对CH自由基与NO反应机理的研究结果看,CH自由基与NO反应为多通道反应.可能的产物是OH+CN、0+HCN、H+CNO、H+NCO、N+HCO、NH+CO,这些产物与实验检测到的结果相吻合.理论分析表明,反应通道CH+NO→IM6→TS8→IM7→TS9→N+HCO控制步骤的活化能最低(144.6kJ/mol),为主要反应通道.同时理论计算得到的各通道反应热与实验值一致,可以说明研究结果是比较可靠的.  相似文献   

4.
采用量子化学UMP2方法,在6-311G基组水平上对自由基SiH3与HNCO的反应机理进行了研究,全参数优化了反应过程中的反应物、中间体、过渡态和产物,通过频率分析和内禀反应坐标(IRC)确定了中间体和过渡态.计算结果表明SiH3自由基与HNCO的反应有三条可能的反应通道,其中反应通道SiH3+HN—CO→IM2或IM3→TS2→P2(SiH3NH+CO)反应势垒最低,为主反应通道.  相似文献   

5.
采用密度泛函理论的B3LYP方法,在6-31G*基组水平下研究了6-羟基-1-菲基-哌啶-2-酮脱羟基生成吡咯里西啶类生物碱的微观反应机理.优化了反应过程中的反应物、中间体、过渡态和产物.振动分析结果和IRC分析结果证实了中间体和过渡态的真实性.结构和能量分析表明,反应物R脱羟基并进一步发生阳离子环合反应有两条反应通道,分别为:R→IM1→TS1→IM2→P1和R→IM1→TS2→IM3→P2.反应通道R→IM1→TS1→IM2→P1控速步骤活化能最低,是该反应的主要通道.与实验报道是相吻合的.  相似文献   

6.
用密度泛函理论(DFT)中的B3LYP方法,在6-311++G(d,p)基组水平上研究了CH2与OH自由基反应的微观机理,全参数优化了反应过程中各反应物、中间体、过渡态和产物的几何构型,经振动分析证实了中间体和过渡态的真实性,并在G3水平上计算了它们的能量.研究结果表明,OH自由基与CH2自由基反应为多通道多步反应过程,从反应的活化能来看,每一条通道都是可行的,比较反应通道的控制步骤的反应活化能发现,CH2与OH自由基反应主要通道是IMl→TSl→H2CO+H.  相似文献   

7.
HCO自由基与NO2反应机理的理论研究   总被引:5,自引:5,他引:0  
用密度泛函理论(DFT)的B3LYP和B3P86方法,在6 311 G(d,p)基组水平上研究了HCO自由基与NO2反应的微观机理,全参数优化了反应过程中各反应物、中间体、过渡态和产物的几何构型.在CBS QB3及G3水平上计算了各驻点的能量.振动分析和IRC计算结果都证实了中间体和过渡态的真实性.从对HCO自由基与NO2的反应机理的研究结果看,HCO自由基与NO2反应的几条通道控制步骤的活化能分别为112.49和291.49kJ·mol-1,反应HCO NO2→HONO CO的活化能较低为主反应通道.理论计算所得的反应产物是HONO,CO2,NO,CO,H,这些产物已被实验手段检测到,这说明以上结论与实验值相吻合,从而证明我们的研究结果是可靠的.  相似文献   

8.
CH2与NO化学反应机理的理论研究   总被引:6,自引:3,他引:6  
用密度泛函理论(DFT)研究了CH2与NO化学反应机理,在B3LYP/6-31 G^*水平上用梯度解析技术全自由度优化上述反应的反应物、产物和反应路径上的中间体、过渡态的几何构型,并通过频率振动分析确认中间体和过渡态,分析原子净电荷分布规律,沿IRC反应路径的能量、构型变化曲线来描述,从而确定了此反应的可能反应通道有:(a)R→IM1→TS1→P1和(b)R→IM1→TS2→IM2→TS3→IM3→TS4→IM4-trans←→IM4-cis→TS5→IM5→TS6→P2。研究表明最佳反应通道为(b)。  相似文献   

9.
CH2O与H反应机理的量子化学研究   总被引:7,自引:6,他引:1  
用密度泛函理论(DFT)的B3LYP方法,在6-311 G(3df,3pd)基组水平上研究了CH20与H自由基反应的微观机理,全参数优化了反应过程中各反应物、中间体、过渡态和产物的几何构型,在CCSD(T)水平上计算了它们的能量.振动分析结果证实了中间体和过渡态的真实性,从对CH20与H的反应机理的研究结果看,CH20与H原子反应为3条反应通道多步反应过程,cH20与H原子反应的主要反应通道是CH20 →H→TS6→CHO H2,其主要产物是自由基CHO和H2,与实验结果吻合.  相似文献   

10.
采用密度泛函理论的B3LYP方法,用不同基组研究了CH2CF自由基与HNCS的微观反应机理,优化了反应过程中的反应物、中间体、过渡态和产物;振动分析结果和IRC分析结果证实了中间体和过渡态的真实性,用AIM计算所得的部分成键临界点电荷密度的变化也确认了反应过程向生成物方向进行.对于CH2CF自由基与HNCS反应,我们找到了五条反应通道.结果分析表明,反应通道CH2CF+HNCS→IMA1→TSA1→CH2CHF+NCS控制步骤活化能最低,是该反应的主要通道,有稳定的氢键复合物IMA1生成,表现为H原子迁  相似文献   

11.
用密度泛函理论B3LYP方法研究了单、三重态CCl2与HNCS的反应机理.在B3LYP/6-311++G**水平上对反应物、中间体和过渡态进行了全几何参数优化;通过频率分析和内禀反应坐标(IRC)方法确认了中间体和过渡态;并用CCSD(T)/6-311++G**//B3LYP/6-311++G**方法计算了各个驻点的单点能.结果表明,对于单、三重态CCl2与HNCS反应,共有4条可行的反应通道,且通道CCl2(S)+HNCS→IM1→TS1→IM2→HCN+CCl2S(P1)反应能垒最低,为该反应的主反应通道;单重态抽提亚氨基通道反应能垒也比较低,为主反应通道的竞争通道.可为进一步实验研究提供参考.  相似文献   

12.
用DFT B3LYP和QCISD方法研究了铍氯类锗烯H2GeClBeCl与RH(R=OH,NH2,CH3)的插入反应.在B3LYP/6-311+G(d,p)水平上优化了反应过程中所有驻点的构型并用QCISD/6-311+G(d,p)方法计算了单点能量,并考察了溶剂化效应对反应的影响.结果表明,在插入反应势能面上有一个过渡态(TS)和一个中间体(IM)连接反应物和产物.计算的反应势垒分别为177.62(R=OH),186.30(R=NH2),214.90(R=CH3)kJ/mol,表明在相同反应条件下,反应活性大小为H-OH,H-NH2,H-CH3,随着溶剂极性的增大,反应越来越容易进行.  相似文献   

13.
H2CO与HO自由基反应机理的理论研究   总被引:3,自引:1,他引:2  
采用密度泛函理论(DFT)的B3LYP方法,在6-311 G(d,p)基组水平上研究了H2CO与HO自由基反应的微观机理,全参数优化了反应过程中各反应物、中间体、过渡态和产物的几何构型.研究发现:H2CO与HO自由基反应的两条反应通道都是可行的,其生成产物是H2,CO2和H原子.从构型参数看,对于经典分子的计算结果与文献值很接近,表明计算的结果是可靠的.  相似文献   

14.
为揭示HCNO与OH自由基反应的微观机理,采用密度泛函理论(DFT)在B3LYP/6—311G(d,P)水平上对该体系可能出现的7个反应通道上各反应物、中间体、过渡态和产物的几何构型进行了搜索、几何全优化和振动分析验证,并在QCISD(T)/6-311G(d,P)水平上进行了能量校正.计算结果表明:各反应通道均为多步过程,反应的主产物为H2NO+CO和HCO+HNO,它们分别经历通道3和通道7而最后生成.  相似文献   

15.
COS与OH自由基反应的理论研究   总被引:3,自引:0,他引:3  
用量子化学密度泛函理论(Dzr)和G3方法,对COS与OH自由基的反应进行了理论研究.在UB3LYP/6-31G^*,UB3LYP/6-311^++G^**和G3计算水平上,优化了反应势能面上各驻点(反应物、产物、中间体和过渡态)的几何构型,在UB3LYP/6-31G^*水平上通过内禀反应坐标(mc)计算和振动分析,对过渡态进行了确认,并确定了反应机理.研究结果表明,反应主要产物为CO和SOH.  相似文献   

16.
本文用B3LYP方法在6-311++G^**基组水平上研究了CH2C lO+NO自由基反应体系的一个反应通道:CF3O2+NO→IM1→TS1→IM2→TS2→CF2O+CO2F.研究表明,CF2O+CO2F为此自由基反应的产物之一.  相似文献   

17.
用从头算(ab initio)方法和密度泛函理论(DFT)对H与CF3O2自由基的反应进行了研究,在HF/6-31G。和B3LYP/6-31G基组水平上,对该反应过程中可能出现的中间体和过渡态的构型及能量进行了优化,并分析了反应过程中生成的产物,对各过渡态,利用内禀反应坐标IRC来进行验证,在B3LYP/6-31G构型优化的基础上,用B3LYP/6-311G和B3LYP/6-311 G计算了反应过程中各物种的总能量和相对能量,根据相对能量绘制的势能剖面图直观地反映了H CF3O2的反应机理,由势能面得出,反应生成CF3O和OH的历程最容易发生,这与实验事实是一致的.  相似文献   

18.
OH自由基与CS2反应机理的理论研究   总被引:4,自引:0,他引:4  
用量子化学密度泛函理论(DFT)和G3方法,对OH自由基与CS2的反应进行了研究,在B3LYP/6-31G*,B3LYP/6-311 G(3df,3pd)G3计算水平上,优化了反应势能面上各驻点的几何构型,并对它们进行了内禀反应坐标(IRC)计算和振动分析,以确定中间体和过渡态的真实性,研究结果表明:OH自由基与CS2反应的产物为COS和SH,计算结果与实验结果一致。  相似文献   

19.
研究采用密度泛函理论中的B3LYP方法,在6-311G(d,p)基组水平下,优化反应物、产物、中间异构体和过渡态分子,得到可靠的几何构型和频率.通过内禀反应坐标计算,确认了四条反应通道,并且以通道中中间体、过渡态相对能量为基础,讨论了各反应通道的优先顺序.在反应中,H和NCO的初始连接有两种方式,H分别进攻NCO两端的N和O,进行无势垒加合,得到两个低能中间体HNCO和HOCN.HNCO中∠NCO从172.9°减小到69.0°,生成一个相对能量较高但N—C键较长的中间体,该中间体发生N—C键断裂生成主要产物P1(CO+NH).从HNCO和HOCN出发均可生成次要产物P2(CN+OH),而从HNCO出发还有另一条生成产物P3(CH+NO)的路径,反应沿该路径进行的可能性较小.  相似文献   

20.
采用MP2(Full),B3LYP,QCISD/MP2方法在6-311G(d,p)水平上对Cl原子与HNCO反应的微观机理进行了理论研究.采用MP2(Full)和B3LYP对反应位能面上的各驻点进行几何构型的全优化,振动分析和IRC计算证实了中间体和过渡态的真实性和相互连接关系.3种方法计算得到了几个反应通道的反应活化能.研究表明,Cl原子进攻HNCO中的H原子为反应的主要反应通道.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号