首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since its foundation in the mid-nineteenth century, the University of Toronto has accumulated a substantial number of historically-significant scientific objects. As Canada’s largest research university, much of this material is of national significance. Despite numerous attempts since the late 1970s to establish a universal policy for the preservation and safeguarding of scientific apparatus, the survival of Toronto’s scientific material heritage has depended partly on the initiatives of dedicated individuals, partly on luck.The following examination seeks a comprehensive history of the material culture of science at the University, focussing on scientific instrumentation and natural history collections. It examines the circumstances under which some material survives and traces efforts to develop a curated collection, concluding with some recent progress in acquiring storage and developing an online catalogue. It argues that early university science museums formed an important venue through which the University fulfilled its public function of studying the frontier and assisting the expansion of the colonies. The display and interpretation of scientific material culture had an important impact on the University’s early history.  相似文献   

2.
This paper investigates the functioning of the ‘Copernican paradox’ (stating that the Sun stands still and the Earth revolves around the Sun) in the late sixteenth- and early seventeenth-century England, with particular attention to Edward Gresham's (1565–1613) little-known and hitherto understudied astronomical treatise – Astrostereon, or A Discourse of the Falling of the Planet (1603). The text, which is fully appreciative of the heliocentric system, is analysed within a broader context of the ongoing struggles with the Copernican theory at the turn of the seventeenth century. The article finds that apart from having a purely rhetorical function, the ‘Copernican paradox’ featured in the epistemological debates on how early modern scientific knowledge should be constructed and popularised. The introduction of new scientific claims to sceptical audiences had to be done both through mathematical demonstrations and by referring to the familiar concepts and tools drawn from the inventory of humanist education. As this article shows, Gresham's rhetorical techniques used for the rejection of paradoxicality of heliocentrism are similar to some of the practices which Thomas Digges and William Gilbert employed in order to defend their own findings and assertions.  相似文献   

3.
Coping with recent heritage is troublesome for history of science museums, since modern scientific artefacts often suffer from a lack of esthetic and artistic qualities and expressiveness. The traditional object-oriented approach, in which museums collect and present objects as individual showpieces is inadequate to bring recent heritage to life. This paper argues that recent artefacts should be regarded as “key pieces.” In this approach the object derives its meaning not from its intrinsic qualities but from its place in an important historical event or development. The “key pieces” approach involves a more organic way of collecting and displaying, focussing less on the individual object and more on the context in which it functioned and its place in the storyline. Finally, I argue that the “key pieces” approach should not be limited to recent heritage. Using this method as a general guiding principle could be a way for history of science museums to appeal to today’s audiences.  相似文献   

4.
In the early years of the nineteenth century, the English chemist John Dalton (1766–1844) developed his atomic theory, a set of theoretical commitments describing the nature of atoms and the rules guiding their interactions and combinations. In this paper, I examine a set of conceptual and illustrative tools used by Dalton in developing his theory as well as in presenting it to the public in printed form as well as in his many public lectures. These tools—the concept of ‘atmosphere’, the pile of shot analogy, and Dalton's system of chemical notation—served not just to guide Dalton's own thinking and to make his theories clear to his various audiences, but also to bind these theories together into a coherent system, presented in its definitive form in the three volumes of A New System of Chemical Philosophy (1808, 1810, and 1827). Despite these links, Dalton's contemporaries tended to pick and choose which of his theories to accept; his system of notation failed to be adopted in part because it embodied the whole of his system indivisibly.  相似文献   

5.
Public participation in scientific research has gained prominence in many scientific fields, but the theory of participatory research is still limited. In this paper, we suggest that the divergence of values and goals between academic researchers and public participants in research is key to analyzing the different forms this research takes. We examine two existing characterizations of participatory research: one in terms of public participants' role in the research, the other in terms of the virtues of the research. In our view, each of these captures an important feature of participatory research but is, on its own, limited in what features it takes into account. We introduce an expanded conception of norms of collaboration that extends to both academic researchers and public participants. We suggest that satisfying these norms requires consideration of the two groups' possibly divergent values and goals, and that a broad characterization of participatory research that starts from participants' values and goals can motivate both public participants’ role in the research and the virtues of the research. The resulting framework clarifies the similarities and differences among participatory projects and can help guide the responsible design of such projects.  相似文献   

6.
The historic scientific collections of well-established University Museums—the Whipple at Cambridge and the Museum of the History of Science at Oxford, for example—have long served in university teaching and as objects of research for historians. But what is involved in starting such a museum from scratch? This paper offers some reflections based on recent experiences at the University of Leeds. In a relatively short period, the Leeds project has grown from a small volunteer initiative, aimed at salvaging disparate scientific collections from all over the campus, to a centrally supported and long-term scheme to provide collections care, exhibitions, and public events, as well as material for teaching and research within history and philosophy of science. Recent work undertaken on a range of Leeds objects and collections, including a camera reportedly used to take the first X-ray diffraction photographs of DNA in the 1930s and the Mark 1 prototype of the MONIAC (Monetary National Income Automatic Computer), built and designed at Leeds in 1949 to model the flow of money through the economy, highlights the national and international significance of the University’s scientific heritage as well as the project’s ambition of providing students with on-going collections care responsibilities and object-research experience. Sketching possible futures for the Leeds project, the paper considers challenges confronting the heritage sector more broadly, and how those involved with historic scientific collections can make use of new opportunities for teaching, research, and public engagement.  相似文献   

7.
8.
9.
Scrutinizing the main activities of the Sociedad Astronómica de Barcelona (SAB), a scientific society that was founded in 1910 and lasted until 1921, this paper analyses how and why its members disseminated astronomy to society at large. Inspired by Camille Flammarion (1842–1925), and with a strong amateur character, the programme of the SAB raised interest among academic scientists, politicians, priests, navy officers, educated audiences, and positivist anticlerical writers. It rapidly conquered the public sphere through well-attended lectures, exhibitions, observations, and publications. In the context of an industrial city, which at that time was suffering serious social tensions, the popularization of astronomy transcended social and cultural boundaries. It created common ground between expert and lay knowledge, science and art, the ‘natural’ and the ‘social’, and between science and religion. In addition, it was considered as one of the only possible ways to raise the scientific level of a country such as Spain, which at that time perceived itself as peripheral, even backward, in terms of mainstream innovations in science and technology.  相似文献   

10.
Thomas Urquhart (1611–1660), celebrated for his English translation of Rabelais’ Gargantua et Pantagruel, has earned some notoriety for his eccentric, putatively incomprehensible early book on trigonometry The Trissotetras (1645). The Trissotetras was too impractical to succeed in its own day as a textbook, since it lacked both trigonometric tables and sample calculations. But its current bad reputation is based on literary authors’ amplifications of the verdict prefaced to its 19th century reprinting by one mathematician, William Wallace, who lacked the background to appreciate the book’s historical context. Considering that context (including seventeenth century ‘copious’ prose, and medieval logic and ‘art of memory’), the bad reputation is undeserved: the book is mathematically clear, clever (e.g. in superimposing 16 problems into one diagram), and complete. The Trissotetras may thus be viewed as simply one more of Urquhart’s polymathic projects and involvements – which included education, rise of the middle class, religious and class conflicts, development of science and mathematics, search for patronage, universal language construction, and development of English prose – which serve to make him a lively and instructive intellectual Everyman for his time.  相似文献   

11.
Philosophers of science are increasingly arguing for and addressing the need to do work that is socially and scientifically engaged. However, we currently lack well-developed frameworks for thinking about how we should engage other expert communities and what the epistemic benefits are of doing so. In this paper, I draw on Collins and Evans' concept of ‘interactional expertise’ – the ability to speak the language of a discipline in the absence of an ability to practice – to consider the epistemic benefits that can arise when philosophers engage scientific communities. As Collins and Evans argue, becoming an interactional expert requires that one ‘hang out’ with members of the relevant expert community in order to learn crucial tacit knowledge needed to speak the language. Building on this work, I argue that acquiring interactional expertise not only leads to linguistic fluency, but it also confers several ‘socio-epistemic’ benefits such as the opportunity to cultivate trust with scientific communities. These benefits can improve philosophical work and facilitate the broader uptake of philosophers' ideas, enabling philosophers to meet a variety of epistemic goals. As a result, having at least some philosophers of science acquire interactional expertise via engagement will likely enhance the diversity of epistemic capacities for philosophy of science as a whole. For some philosophers of science, moreover, the socio-epistemic benefits identified here may be more important than the ability to speak the language of a discipline, suggesting the need for a broader analysis of interactional expertise, which this paper also advances.  相似文献   

12.
Paper occupies a special place in histories of knowledge. It is the substrate of communication, the stuff of archives, the bearer of marks that make worlds. For the early-modern period in particular we now have a wealth of studies of ‘paper tools’, of the ways in which archives were assembled and put to use, of the making of lists and transcribing of observations, and so on. In other fields, too, attention has turned to the materiality of information. How far is it possible to draw a stable methodology out of the insights of literary and book historians, bibliographers, anthropologists, and those working in media studies? Do these diverse fields in fact refer to the same thing when they talk of paper, its qualities, affordances and limitations? In attempting to answer these questions, the present essay begins in the rich territory of early-modern natural philosophy – but from there opens out to take in recent works in a range of disciplines. Attending to the specific qualities of paper is only possible, I argue, if it is understood that paper can be both transparent and opaque depending on the social world it inhabits and helps to constitute. Paper flickers into and out of view, and it is precisely this quality that constitutes its sociomateriality.  相似文献   

13.
ABSTRACT

Robert Hooke’s development of the theory of matter-as-vibration provides coherence to a career in natural philosophy which is commonly perceived as scattered and haphazard. It also highlights aspects of his work for which he is rarely credited: besides the creative speculative imagination and practical-instrumental ingenuity for which he is known, it displays lucid and consistent theoretical thought and mathematical skills. Most generally and importantly, however, Hooke’s ‘Principles?…?of Congruity and Incongruity of bodies’ represent a uniquely powerful approach to the most pressing challenge of the New Science: legitimizing the application of mathematics to the study of nature. This challenge required reshaping the mathematical practices and procedures; an epistemological framework supporting these practices; and a metaphysics which could make sense of this epistemology. Hooke’s ‘Uniform Geometrical or Mechanical Method’ was a bold attempt to answer the three challenges together, by interweaving mathematics through physics into metaphysics and epistemology. Mathematics, in his rendition, was neither an abstract and ideal structure (as it was for Kepler), nor a wholly-flexible, artificial human tool (as it was for Newton). It drew its power from being contingent on the particularities of the material world.  相似文献   

14.
When attempting to assess the strengths and weaknesses of various principles in their potential role of guiding the formulation of a theory of quantum gravity, it is crucial to distinguish between principles which are strongly supported by empirical data – either directly or indirectly – and principles which instead (merely) rely heavily on theoretical arguments for their justification. Principles in the latter category are not necessarily invalid, but their a priori foundational significance should be regarded with due caution. These remarks are illustrated in terms of the current standard models of cosmology and particle physics, as well as their respective underlying theories, i.e., essentially general relativity and quantum (field) theory. For instance, it is clear that both standard models are severely constrained by symmetry principles: an effective homogeneity and isotropy of the known universe on the largest scales in the case of cosmology and an underlying exact gauge symmetry of nuclear and electromagnetic interactions in the case of particle physics. However, in sharp contrast to the cosmological situation, where the relevant symmetry structure is more or less established directly on observational grounds, all known, nontrivial arguments for the “gauge principle” are purely theoretical (and far less conclusive than usually advocated). Similar remarks apply to the larger theoretical structures represented by general relativity and quantum (field) theory, where – actual or potential – empirical principles, such as the (Einstein) equivalence principle or EPR-type nonlocality, should be clearly differentiated from theoretical ones, such as general covariance or renormalizability. It is argued that if history is to be of any guidance, the best chance to obtain the key structural features of a putative quantum gravity theory is by deducing them, in some form, from the appropriate empirical principles (analogous to the manner in which, say, the idea that gravitation is a curved spacetime phenomenon is arguably implied by the equivalence principle). Theoretical principles may still be useful however in formulating a concrete theory (analogous to the manner in which, say, a suitable form of general covariance can still act as a sieve for separating theories of gravity from one another). It is subsequently argued that the appropriate empirical principles for deducing the key structural features of quantum gravity should at least include (i) quantum nonlocality, (ii) irreducible indeterminacy (or, essentially equivalently, given (i), relativistic causality), (iii) the thermodynamic arrow of time, (iv) homogeneity and isotropy of the observable universe on the largest scales. In each case, it is explained – when appropriate – how the principle in question could be implemented mathematically in a theory of quantum gravity, why it is considered to be of fundamental significance and also why contemporary accounts of it are insufficient. For instance, the high degree of uniformity observed in the Cosmic Microwave Background is usually regarded as theoretically problematic because of the existence of particle horizons, whereas the currently popular attempts to resolve this situation in terms of inflationary models are, for a number of reasons, less than satisfactory. However, rather than trying to account for the required empirical features dynamically, an arguably much more fruitful approach consists in attempting to account for these features directly, in the form of a lawlike initial condition within a theory of quantum gravity.  相似文献   

15.
What happens when you take the idea of the biblical Adam—the first human – and apply it to insects? You create an origin story for Nature’s tiniest creatures, one that gives them ‘a Pedigree as ancient as the first creation’. This the naturalist Robert Hooke argued in his treatise, the Micrographia (1665). In what follows, I will retrace how Hooke endeavoured to show that insects—then widely believed to have arisen out of the dirt – were the products of an ancient lineage. These genealogies, while constructed from empirical observation, were conjectures of the imagination. Section 2 shows how Hooke introduced the concept of a ‘prime parent’ (an Adam-insect) to explain the anatomical similarities between ‘mites’. Section 3 demonstrates how Hooke defined the family of “gnats” as tiny machines built from the same components and relates Hookean genealogies to contemporary ideas about Noah’s Ark. Section 4 shows how Hooke outlined the morphology of ‘insects’ (delineating what we now call arthropods). Section 5 explores how Hooke used fossils to study these animals in the distant past. In sum, Hooke was turning natural history – collecting and describing insects – into natural history: reconstructing their origins.  相似文献   

16.
The concept of interactional expertise – characterized by sociologists Harry Collins and Robert Evans as the ability to speak the language of a discipline without the corresponding ability to practice – can serve as a powerful way of breaking down expert/non-expert dichotomies and providing a role for new voices in specialist communities. However, in spite of the vast uptake of this concept and its potential to fruitfully address many important issues related to scientific expertise, there has been surprisingly little critical analysis of it. We seek to remedy this situation by considering potential benefits of interactional expertise and the ways in which the current conception can – and cannot – realize those benefits. In particular, we argue that interactional expertise hasn't reached its full potential for addressing who ought to be involved in scientific research and decision-making, largely owing to an unnecessarily restrictive way of operationalizing the concept. In its place, we offer a broader, more pluralistic account of interactional expertise – one that is in line with the original spirit of the concept, but also captures the diversity that we see as being an important aspect of interactional experts and the value they can bring to the table.  相似文献   

17.
Our paper discusses the epistemic attitudes of particle physicists on the discovery of the Higgs boson at the Large Hadron Collider (LHC). It is based on questionnaires and interviews made shortly before and shortly after the discovery in 2012. We show, to begin with, that the discovery of a Standard Model (SM) Higgs boson was less expected than is sometimes assumed. Once the new particle was shown to have properties consistent with SM expectations – albeit with significant experimental uncertainties –, there was a broad agreement that ‘a’ Higgs boson had been found. Physicists adopted a two-pronged strategy. On the one hand, they treated the particle as a SM Higgs boson and tried to establish its properties with higher precision; on the other hand, they searched for any hints of physics beyond the SM. This motivates our first philosophical thesis: the Higgs discovery, being of fundamental importance and establishing a new kind of particle, represented a crucial experiment if one interprets this notion in an appropriate sense. Duhemian underdetermination is kept at bay by embedding the LHC into the tradition of previous precision experiments and the experimental strategies thus established. Second, our case study suggests that criteria of theory (or model) preference should be understood as epistemic and pragmatic values that have to be weighed in factual research practice. The Higgs discovery led to a shift from pragmatic to epistemic values in physicists’ assessment of the mechanisms of electroweak symmetry breaking. Complex criteria, such as naturalness, combine epistemic and pragmatic values, but are coherently applied by the community.  相似文献   

18.
Color systems make accurate color specification and matching possible in science, art, and industry by defining a coordinate system for all possible color perceptions. The Munsell Color System, developed by the artist Albert Henry Munsell in the early twentieth century, has influenced color science to this day. I trace the development of the Munsell Color System from its origins in the art world to its acceptance in the scientific community.Munsell's system was the first to accurately and quantitatively describe the psychological experience of color. By considering the problems that color posed for Munsell's art community and examining his diaries and published material, I conclude that Munsell arrived at his results by remaining agnostic as to the scientific definition of color, while retaining faith that color perceptions could be objectively quantified. I argue that Munsell was able to interest the scientific community in his work because color had become a controversial topic between physicists and psychologists. Parts of Munsell's system appealed to each field, making it a workable compromise. For contrast, I suggest that three contemporary scientists with whom Munsell had contact – Wilhelm Ostwald, Ogden Rood, and Edward Titchener – did not reach the same conclusions in their color systems because they started from scientific assumptions about the nature of color.  相似文献   

19.
James Geikie's Great Ice Age (1874) first presented to the geological public the Pleistocene. modern interpretation of alternating mild and cold periods during the Though it was supported by geological evidence, Geikie's view of the Ice Age was based on a theoretical framework supplied by the climatic physics of James Croll. Mid-nineteenth-century British geologists had encountered great difficulty in making sense out of the varied and complicated glacial deposits, or ‘drift’, and had formulated the ‘iceberg’ theory to account for the apparent chaos of the drift, an explanation which discouraged its stratigraphic study. The reaffirmation of faith in continental glaciation by several Scottish geologists in the 1850s brought with it a belief in an eventful Pleistocene, but it remained difficult to discover the events of Ice Age history from study of the glacial deposits. In 1864 Croll presented a detailed climatic history of the Ice Age deduced from astronomy and physical geography. By 1871 James Geikie was using Croll's scheme of Ice Age history as the basis for his impressive synthesis of Pleistocene data from throughout the world.  相似文献   

20.
In my paper I argue for mobilising recent material heritage at universities in teaching history of contemporary science. Getting your hands dirty in the messy worlds of the laboratory and the storage room, and getting entangled with the commemorative practices of scientists and technicians does not belong to the common experiences of students in history and philosophy of science. Despite the recent material turn in cultural studies, students’ engagement with the material world often remains a linguistic exercise, extending at most to an excursion to the sanitised and academically encultured world of the museum exhibit.I contrast this approach by drawing on experiences of taking students to the Atomei, Germany’s oldest research reactor at the Garching campus of the Munich University of Technology. Decommissioned since 2000, the installation and its history are still controlled by scientists. Studying contemporary laboratories and their materiality has so far been the domain of sociologists and ethnographers. I argue for opening these spaces to historians of science and engaging with the ‘unfinished’ material world of contemporary science. Taking the material seriously beyond the linguistic turn and asking students to explore laboratories and other sites of knowledge production challenges existing histories and historiographies. By exploring local university departments and their recent histories through their material heritage, we can observe everyday science and confront scientists and technicians’ cultures with those of historians’. By engaging with recent material heritage as historians and archivists, students can make an important contribution to enhancing the awareness about this heritage, its implications for history writing, as well as its documentation and preservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号