首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scientific heritage can be found in every teaching and research institution, large or small, from universities to museums, from hospitals to secondary schools, from scientific societies to research laboratories. It is generally dispersed and vulnerable. Typically, these institutions lack the awareness, internal procedures, policies, or qualified staff to provide for its selection, preservation, and accessibility. Moreover, legislation that protects cultural heritage does not generally apply to the heritage of science. In this paper we analyse the main problems that make scientific heritage preservation so difficult to address. We discuss the concept and present existing preservation tools, including recent surveys, legislation, policies, and innovative institutional approaches. We briefly analyse two recent initiatives for the preservation of scientific heritage, at the Universities of Lisbon and Cambridge.  相似文献   

2.
Coping with recent heritage is troublesome for history of science museums, since modern scientific artefacts often suffer from a lack of esthetic and artistic qualities and expressiveness. The traditional object-oriented approach, in which museums collect and present objects as individual showpieces is inadequate to bring recent heritage to life. This paper argues that recent artefacts should be regarded as “key pieces.” In this approach the object derives its meaning not from its intrinsic qualities but from its place in an important historical event or development. The “key pieces” approach involves a more organic way of collecting and displaying, focussing less on the individual object and more on the context in which it functioned and its place in the storyline. Finally, I argue that the “key pieces” approach should not be limited to recent heritage. Using this method as a general guiding principle could be a way for history of science museums to appeal to today’s audiences.  相似文献   

3.
Since its foundation in the mid-nineteenth century, the University of Toronto has accumulated a substantial number of historically-significant scientific objects. As Canada’s largest research university, much of this material is of national significance. Despite numerous attempts since the late 1970s to establish a universal policy for the preservation and safeguarding of scientific apparatus, the survival of Toronto’s scientific material heritage has depended partly on the initiatives of dedicated individuals, partly on luck.The following examination seeks a comprehensive history of the material culture of science at the University, focussing on scientific instrumentation and natural history collections. It examines the circumstances under which some material survives and traces efforts to develop a curated collection, concluding with some recent progress in acquiring storage and developing an online catalogue. It argues that early university science museums formed an important venue through which the University fulfilled its public function of studying the frontier and assisting the expansion of the colonies. The display and interpretation of scientific material culture had an important impact on the University’s early history.  相似文献   

4.
For many years, scientific heritage has received attention from multiple actors from different spheres of activity—archives, museums, scientific institutions. Beyond the heterogeneity revealed when examining the place of scientific heritage in different places, an authentic patrimonial configuration emerges and takes the form of a nebula of claims and of accomplishments that result, in some cases, in institutional and political recognition at the national level, in various country all around the world. At the international level, the creation of the international committee dedicated to University Museums and Collections (UMAC) within the International Council of Museums (ICOM) certainly testified from this raising interest in academic heritage and the existence of a specific community concern with it.This article presents numerous initiatives for the preservation of scientific heritage in France, with the goal of analysing the relationship scientists have with their heritage. We argue that scientific communities have a special relationship with heritage, which is characterized by a number of ambiguities. We show that such ambivalences allow analysis of identity, discipline, professional, and social issues operative in defining heritage and being redefined by heritage. To explore these dimensions, we have chosen to present three different case studies. The first traces the institutional uses of heritage by a scientific institution, the Commissariat à l’énergie atomique (CEA), through the transformation of the first French atomic reactor (ZOE) into a museum. The second example describes the initiatives of French astronomers from the mid-1990s to construct a national programme for the protection of astronomy heritage. Lastly, we recount the case of universities, with the example of the Université de Strasbourg.  相似文献   

5.
The purpose of this article is twofold: on the one hand, we present the outlines of a history of university collections in Germany. On the other hand, we discuss this history as a case study of the changing attitudes of the sciences towards their material heritage. Based on data from 1094 German university collections, we distinguish three periods that are by no means homogeneous but offer a helpful starting point for a discussion of the entangled institutional and epistemic factors in the history of university collections. In the 19th century, university collections were institutionalized and widely recognized as indispensable in research and teaching. During the 20th century, university collection became increasingly marginalized both on an institutional and theoretical level. Towards the end of the 20th century, the situation of university collections improved partly because of their reconsideration as material heritage.  相似文献   

6.
This work presents an overview of Brazil’s scientific heritage, especially the collections and sets of artefacts related to the exact sciences and engineering. The information provided is the outcome of a survey being undertaken on a national level under the coordination of Museu de Astronomia e Ciências Afins (Museum of Astronomy and Related Sciences, or MAST), which is leading teams from five Brazilian universities. Sets of objects have been identified at museums, universities, military establishments, and some secondary schools. The best preserved collections are at a few museums, but the universities hold most of the artefacts. The overwhelming majority of the objects were made in the twentieth century, primarily the second half. After the general results of the survey are presented, details about a few sets of objects and collections are given, including information about their current state, the provenance of the objects and the history of the institutions. The objective of this initiative is to raise the awareness of the Brazilian state so that a policy is created for preserving this heritage and financing mechanisms to assure it can be researched, conserved, and ultimately fulfil its mission in society.  相似文献   

7.
The historic scientific collections of well-established University Museums—the Whipple at Cambridge and the Museum of the History of Science at Oxford, for example—have long served in university teaching and as objects of research for historians. But what is involved in starting such a museum from scratch? This paper offers some reflections based on recent experiences at the University of Leeds. In a relatively short period, the Leeds project has grown from a small volunteer initiative, aimed at salvaging disparate scientific collections from all over the campus, to a centrally supported and long-term scheme to provide collections care, exhibitions, and public events, as well as material for teaching and research within history and philosophy of science. Recent work undertaken on a range of Leeds objects and collections, including a camera reportedly used to take the first X-ray diffraction photographs of DNA in the 1930s and the Mark 1 prototype of the MONIAC (Monetary National Income Automatic Computer), built and designed at Leeds in 1949 to model the flow of money through the economy, highlights the national and international significance of the University’s scientific heritage as well as the project’s ambition of providing students with on-going collections care responsibilities and object-research experience. Sketching possible futures for the Leeds project, the paper considers challenges confronting the heritage sector more broadly, and how those involved with historic scientific collections can make use of new opportunities for teaching, research, and public engagement.  相似文献   

8.
Despite aspirations to substitute animal experimentation with alternative methods and recent progress in the area of non-animal approaches, such as organoïds and organ(s)-on-a-chip technologies, there is no extensive replacement of animal-based research in biomedicine. In this paper, I will analyse this state of affairs with reference to key institutional and socio-epistemic barriers for the development and use of non-animal approaches in the context of biomedical research in Europe. I will argue that there exist several factors that inhibit change in this context. In particular, there is what I call “scientific inertia”, i.e. a certain degree of conservatism in scientific practice regarding the development and use of non-animal approaches to replace animal experimentation. This type of inertia is facilitated by socio-epistemic characteristics of animal-based research in the life sciences and is a key factor in understanding the status quo in biomedical research. The underlying reasons for scientific inertia have not received sufficient attention in the literature to date because the phenomenon transcends traditional disciplinary boundaries in the study of animal experimentation. This paper addresses this issue and seeks to contribute to a better understanding of scientific inertia by using a methodology that looks at the interplay of institutional, epistemic, and regulatory aspects of animal-based research.  相似文献   

9.
With the interest in studying science as practice came an interest in the material artefacts and things that form part of scientific activities in the laboratory, the field, the classroom, or the political arena. This shift in interest in connection with new modes of knowledge production raises new questions regarding the “archive” of science: what should be preserved and where to make it possible to reconstruct scientific practices in the desired detail? While digital media may be able to bridge some of the traditional divisions between the collection of scientific artefacts in museums and the written archival depositories, the move to performing science in silico produces new challenges in respect to establishing the material archives of current science. The paper will discuss these and related questions with special reference to the archives of the contemporary life sciences.  相似文献   

10.
In my paper I argue for mobilising recent material heritage at universities in teaching history of contemporary science. Getting your hands dirty in the messy worlds of the laboratory and the storage room, and getting entangled with the commemorative practices of scientists and technicians does not belong to the common experiences of students in history and philosophy of science. Despite the recent material turn in cultural studies, students’ engagement with the material world often remains a linguistic exercise, extending at most to an excursion to the sanitised and academically encultured world of the museum exhibit.I contrast this approach by drawing on experiences of taking students to the Atomei, Germany’s oldest research reactor at the Garching campus of the Munich University of Technology. Decommissioned since 2000, the installation and its history are still controlled by scientists. Studying contemporary laboratories and their materiality has so far been the domain of sociologists and ethnographers. I argue for opening these spaces to historians of science and engaging with the ‘unfinished’ material world of contemporary science. Taking the material seriously beyond the linguistic turn and asking students to explore laboratories and other sites of knowledge production challenges existing histories and historiographies. By exploring local university departments and their recent histories through their material heritage, we can observe everyday science and confront scientists and technicians’ cultures with those of historians’. By engaging with recent material heritage as historians and archivists, students can make an important contribution to enhancing the awareness about this heritage, its implications for history writing, as well as its documentation and preservation.  相似文献   

11.
12.
In this essay, I examine the curved spacetime formulation of Newtonian gravity known as Newton–Cartan gravity and compare it with flat spacetime formulations. Two versions of Newton–Cartan gravity can be identified in the physics literature—a “weak” version and a “strong” version. The strong version has a constrained Hamiltonian formulation and consequently a well-defined gauge structure, whereas the weak version does not (with some qualifications). Moreover, the strong version is best compared with the structure of what Earman (World enough and spacetime. Cambridge: MIT Press) has dubbed Maxwellian spacetime. This suggests that there are also two versions of Newtonian gravity in flat spacetime—a “weak” version in Maxwellian spacetime, and a “strong” version in Neo-Newtonian spacetime. I conclude by indicating how these alternative formulations of Newtonian gravity impact the notion of empirical indistinguishability and the debate over scientific realism.  相似文献   

13.
This paper defends the deflationary character of two recent views regarding scientific representation, namely RIG Hughes' DDI model and the inferential conception. It is first argued that these views' deflationism is akin to the homonymous position in discussions regarding the nature of truth. There, we are invited to consider the platitudes that the predicate “true” obeys at the level of practice, disregarding any deeper, or more substantive, account of its nature. More generally, for any concept X, a deflationary approach is then defined in opposition to a substantive approach, where a substantive approach to X is an analysis of X in terms of some property P, or relation R, accounting for and explaining the standard use of X. It then becomes possible to characterize a deflationary view of scientific representation in three distinct senses, namely: a “no-theory” view, a “minimalist” view, and a “use-based” view—in line with three standard deflationary responses in the philosophical literature on truth. It is then argued that both the DDI model and the inferential conception may be suitably understood in any of these three different senses. The application of these deflationary ‘hermeneutics’ moreover yields significant improvements on the DDI model, which bring it closer to the inferential conception. It is finally argued that what these approaches have in common—the key to any deflationary account of scientific representation—is the denial that scientific representation may be ultimately reduced to any substantive explanatory property of sources, or targets, or their relations.  相似文献   

14.
Despite deserving a place amongst the historic milestones of the philosophy of disciplines, the system of the sciences put forward by Whewell has so far received little interest. Yet his ideas had a significant impact on the researches subsequently carried out on the topic, exerting in particular a decisive influence on Peirce and Spencer. The present paper aims to display the innovatory nature of the philosophical foundations of the Whewellian classification of the sciences. In this respect, we will argue that the most striking feature of his disciplinary system lies in a heuristic categorization of the sciences according to their “methods of discovery”. This represents a double departure from both the Aristotelian and the Baconian disciplinary paradigms, which are instead underpinned by ontological and epistemological criteria, respectively. Next, we will explore the pivotal role of Whewell's classification of the sciences for his overall project of a philosophy of scientific discovery.  相似文献   

15.
What makes any investigative field a scientific discipline? This article argues that disciplines are ever-changing frameworks within which scientific activity is organised. Moreover, disciplinarity is not a yes or no proposition: scientific activities may achieve degrees of identity development. Degree of consensus is the key, and consensus on many questions (conceptual, methodological, institutional, and social) varies among sciences. Lastly, disciplinary development is non-teleological. Disciplines pass through no regular stages on their way from immature to mature status, designations articulated within the rhetoric of discipline formation. Scientists assemble disciplines using many elements: phenomena, methods, instruments, theories, analytical techniques, and institutional tools such as journals, government bureaus, and university positions. Scientists created geophysics during the nineteenth and twentieth centuries through such a combination. Whether geophysics became a discipline depends on how discipline is defined.  相似文献   

16.
Phage display, the presentation of (poly)peptides as fusions to capsid proteins on the surface of bacterial viruses, celebrates its 25th birthday in 2010. The technique, coupled with in vitro selection, enables rapid identification and optimization of proteins based on their structural or functional properties. In the last two decades, it has advanced tremendously and has become widely accepted by the scientific community. This by no means exhaustive review aims to inform the reader of the key modifications in phage display. Novel display formats, innovative library designs and screening strategies are discussed. I will also briefly review some recent uses of the technology to illustrate its incredible versatility.  相似文献   

17.
Advocates of the self-corrective thesis argue that scientific method will refute false theories and find closer approximations to the truth in the long run. I discuss a contemporary interpretation of this thesis in terms of frequentist statistics in the context of the behavioral sciences. First, I identify experimental replications and systematic aggregation of evidence (meta-analysis) as the self-corrective mechanism. Then, I present a computer simulation study of scientific communities that implement this mechanism to argue that frequentist statistics may converge upon a correct estimate or not depending on the social structure of the community that uses it. Based on this study, I argue that methodological explanations of the “replicability crisis” in psychology are limited and propose an alternative explanation in terms of biases. Finally, I conclude suggesting that scientific self-correction should be understood as an interaction effect between inference methods and social structures.  相似文献   

18.
In his book Thing Knowledge Davis Baird argues that our accustomed understanding of knowledge as justified true beliefs is not enough to understand progress in science and technology. To be more accurate he argues that scientific instruments are to be seen as a form of “objective knowledge” in the sense of Karl Popper.I want to examine if this idea is plausible. In a first step I want to show that this proposal implies that nearly all man-made artifacts are materialized objective knowledge. I argue that this radical change in our concept of knowledge demands strong reasons and that Baird does not give them. I take a look at the strongest strand of arguments of Baird's book—the arguments from cognitive autonomy—and conclude that they do not suffice to make Baird's view of scientific instruments tenable.  相似文献   

19.
Inferentialists about scientific representation hold that an apparatus's representing a target system consists in the apparatus allowing “surrogative inferences” about the target. I argue that a serious problem for inferentialism arises from the fact that many scientific theories and models contain internal inconsistencies. Inferentialism, left unamended, implies that inconsistent scientific models have unlimited representational power, since an inconsistency permits any conclusion to be inferred. I consider a number of ways that inferentialists can respond to this challenge before suggesting my own solution. I develop an analogy to exploitable glitches in a game. Even though inconsistent representational apparatuses may in some sense allow for contradictions to be generated within them, doing so violates the intended function of the apparatus's parts and hence violates representational “gameplay”.  相似文献   

20.
The “universality” of critical phenomena is much discussed in philosophy of scientific explanation, idealizations and philosophy of physics. Lange and Reutlinger recently opposed Batterman concerning the role of some deliberate distortions in unifying a large class of phenomena, regardless of microscopic constitution. They argue for an essential explanatory role for “commonalities” rather than that of idealizations. Building on Batterman's insight, this article aims to show that assessing the differences between the universality of critical phenomena and two paradigmatic cases of “commonality strategy”—the ideal gas model and the harmonic oscillator model—is necessary to avoid the objections raised by Lange and Reutlinger. Taking these universal explanations as benchmarks for critical phenomena reveals the importance of the different roles played by analogies underlying the use of the models. A special combination of physical and formal analogies allows one to explain the epistemic autonomy of the universality of critical phenomena through an explicative loop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号