首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extensional scientific realism is the view that each believable scientific theory is supported by the unique first-order evidence for it and that if we want to believe that it is true, we should rely on its unique first-order evidence. In contrast, intensional scientific realism is the view that all believable scientific theories have a common feature and that we should rely on it to determine whether a theory is believable or not. Fitzpatrick argues that extensional realism is immune, while intensional realism is not, to the pessimistic induction. I reply that if extensional realism overcomes the pessimistic induction at all, that is because it implicitly relies on the theoretical resource of intensional realism. I also argue that extensional realism, by nature, cannot embed a criterion for distinguishing between believable and unbelievable theories.  相似文献   

2.
In this paper I challenge and adjudicate between the two positions that have come to prominence in the scientific realism debate: deployment realism and structural realism. I discuss a set of cases from the history of celestial mechanics, including some of the most important successes in the history of science. To the surprise of the deployment realist, these are novel predictive successes toward which theoretical constituents that are now seen to be patently false were genuinely deployed. Exploring the implications for structural realism, I show that the need to accommodate these cases forces our notion of “structure” toward a dramatic depletion of logical content, threatening to render it explanatorily vacuous: the better structuralism fares against these historical examples, in terms of retention, the worse it fares in content and explanatory strength. I conclude by considering recent restrictions that serve to make “structure” more specific. I show however that these refinements will not suffice: the better structuralism fares in specificity and explanatory strength, the worse it fares against history. In light of these case studies, both deployment realism and structural realism are significantly threatened by the very historical challenge they were introduced to answer.  相似文献   

3.
Perhaps the strongest argument for scientific realism, the no-miracles-argument, has been said to commit the so-called base rate fallacy. The apparent elusiveness of the base rate of true theories has even been said to undermine the rationality of the entire realism debate. On the basis of the Kuhnian picture of theory choice, I confront this challenge by arguing that a theory is likely to be true if it possesses multiple theoretical virtues and is embraced by numerous scientists–even when the base rate converges to zero.  相似文献   

4.
Several recent authors identify structural realism about scientific theories with the claim that the content of a scientific theory is expressible using its Ramsey sentence. Many of these authors have also argued that so understood, the view collapses into empiricist anti-realism, since an argument originally proposed by Max Newman in a review of Bertrand Russell’s The analysis of matter demonstrates that Ramsey sentences are trivially satisfied, and cannot make any significant claims about unobservables. In this paper I argue against both of these claims. Structural realism and Ramsey sentence realism are, in their most defensible versions, importantly different doctrines, and neither is committed to the premises required to demonstrate that they collapse into anti-realism.  相似文献   

5.
In this article, I will view realist and non-realist accounts of scientific models within the larger context of the cultural significance of scientific knowledge. I begin by looking at the historical context and origins of the problem of scientific realism, and claim that it is originally of cultural and not only philosophical, significance. The cultural significance of debates on the epistemological status of scientific models is then related to the question of ‘intelligibility’ and how science, through models, can give us knowledge of the world by presenting us with an ‘intelligible account/picture of the world’, thus fulfilling its cultural-epistemic role. Realists typically assert that science can perform this role, while non-realists deny this. The various strategies adopted by realists and non-realists in making good their respective claims, is then traced to their cultural motivations. Finally I discuss the cultural implications of adopting realist or non-realist views of models through a discussion of the views of Rorty, Gellner, Van Fraassen and Clifford Hooker on the cultural significance of scientific knowledge.  相似文献   

6.
When two or more (groups of) researchers independently investigating the same domain arrive at the same result, a multiple discovery occurs. The pervasiveness of multiple discoveries in science suggests the intuition that they are in some sense inevitable—that one should view them as results that force themselves upon us, so to speak. We argue that, despite the intuitive force of such an “inevitabilist insight,” one should reject it. More specifically, we distinguish two facets of the insight and argue that: (a) the profusion of multiple discoveries in scientific practice does not support the inevitabilist side of the inevitability/contingency of science controversy; and (b) the crucial role of background knowledge in scientific inquiry complicates the attempt to interpret the pervasiveness of multiple discoveries in realist terms.  相似文献   

7.
8.
Inferences from scientific success to the approximate truth of successful theories remain central to the most influential arguments for scientific realism. Challenges to such inferences, however, based on radical discontinuities within the history of science, have motivated a distinctive style of revision to the original argument. Conceding the historical claim, selective realists argue that accompanying even the most revolutionary change is the retention of significant parts of replaced theories, and that a realist attitude towards the systematically retained constituents of our scientific theories can still be defended. Selective realists thereby hope to secure the argument from success against apparent historical counterexamples. Independently of that objective, historical considerations have inspired a further argument for selective realism, where evidence for the retention of parts of theories is itself offered as justification for adopting a realist attitude towards them. Given the nature of these arguments from success and from retention, a reasonable expectation is that they would complement and reinforce one another, but although several theses purport to provide such a synthesis the results are often unconvincing. In this paper I reconsider the realist’s favoured type of scientific success, novel success, offer a revised interpretation of the concept, and argue that a significant consequence of reconfiguring the realist’s argument from success accordingly is a greater potential for its unification with the argument from retention.  相似文献   

9.
This paper reconsiders the challenge presented to scientific realism by the semantic incommensurability thesis. A twofold distinction is drawn between methodological and semantic incommensurability, and between semantic incommensurability due to variation of sense and due to discontinuity of reference. Only the latter presents a challenge to scientific realism. The realist may dispose of this challenge on the basis of a modified causal theory of reference, as argued in the author’s 1994 book, The incommensurability thesis. This referential response has been the subject of a charge of meta-incommensurability by Hoyningen-Huene et al. (1996), who argue that the realist’s referential response begs the question against anti-realist advocates of incommensurability. In reply, it is noted that a tu quoque rejoinder is available to the realist. It is also argued that the dialectical situation favours the scientific realist, since the anti-realist defence of incommensurability depends on an incoherent distinction between phenomenal world and world-in-itself. In light of such incoherence, and a strong commonsense presumption in favour of realism, the referential response to semantic incommensurability may be justifiably based on realism.  相似文献   

10.
Scientific realism driven by inference to the best explanation (IBE) takes empirically confirmed objects to exist, independent, pace empiricism, of whether those objects are observable or not. This kind of realism, it has been claimed, does not need probabilistic reasoning to justify the claim that these objects exist. But I show that there are scientific contexts in which a non-probabilistic IBE-driven realism leads to a puzzle. Since IBE can be applied in scientific contexts in which empirical confirmation has not yet been reached, realists will in these contexts be committed to the existence of empirically unconfirmed objects. As a consequence of such commitments, because they lack probabilistic features, the possible empirical confirmation of those objects is epistemically redundant with respect to realism.  相似文献   

11.
Over the last two decades structural realism has been given progressively more elaborated formulations. Steven French has been at the forefront of the development of the most conceptually sophisticated and historically sensitive version of the view. In his book, The Structure of the World (French (2014)), French shows how structural realism, the view according to which structure is all there is (ontic structural realism), is able to illuminate central issues in the philosophy of science: underdetermination, scientific representation, dispositions, natural modality, and laws of nature. The discussion consistently sheds novel light on the problems under consideration while developing insightful and provocative views. In this paper, I focus on the status of mathematics within French's ontic structural realism, and I raise some concerns about its proper understanding vis-à-vis the realist components of the view.  相似文献   

12.
It might seem impossible to apply Ian Hacking's experimental argument for scientific realism to astrophysical objects; indeed Hacking himself expressed scepticism about extragalactic entities. Such astrophysical antirealism has been the subject of intense debate and is usually seen as an undesired consequence of experimental realism. In this paper, I claim that it is possible to recast the experimental argument by reference to James Woodward's non-anthropocentric account of experimentation so as to apply it to astrophysical entities, such as gravitational lenses. I also argue that this new formulation of the experimental argument solves several problems with Hacking's original version.  相似文献   

13.
J. D. Trout has recently developed a new defense of scientific realism, a new version of the No Miracles Argument. I critically evaluate Trout's novel defense of realism. I argue that Trout's argument for scientific realism and the related explanation for the success of science are self-defeating. In the process of arguing against the traditional realist strategies for explaining the success of science, he inadvertently undermines his own argument.  相似文献   

14.
Structuralists typically appeal to some variant of the widely popular ‘mapping’ account of mathematical representation to suggest that mathematics is applied in modern science to represent the world’s physical structure. However, in this paper, I argue that this realist interpretation of the ‘mapping’ account presupposes that physical systems possess an ‘assumed structure’ that is at odds with modern physical theory. Through two detailed case studies concerning the use of the differential and variational calculus in modern dynamics, I show that the formal structure that we need to assume in order to apply the mapping account is inconsistent with the way in which mathematics is applied in modern physics. The problem is that a realist interpretation of the ‘mapping’ account imposes too severe of a constraint on the conformity that must exist between mathematics and nature in order for mathematics to represent the structure of a physical system.  相似文献   

15.
In this paper, I introduce a new historical case study into the scientific realism debate. During the late-eighteenth century, the Scottish natural philosopher James Hutton made two important successful novel predictions. The first concerned granitic veins intruding from granite masses into strata. The second concerned what geologists now term “angular unconformities”: older sections of strata overlain by younger sections, the two resting at different angles, the former typically more inclined than the latter. These predictions, I argue, are potentially problematic for selective scientific realism in that constituents of Hutton's theory that would not be considered even approximately true today played various roles in generating them. The aim here is not to provide a full philosophical analysis but to introduce the case into the debate by detailing the history and showing why, at least prima facie, it presents a problem for selective realism. First, I explicate Hutton's theory. I then give an account of Hutton's predictions and their confirmations. Next, I explain why these predictions are relevant to the realism debate. Finally, I consider which constituents of Hutton's theory are, according to current beliefs, true (or approximately true), which are not (even approximately) true, and which were responsible for these successes.  相似文献   

16.
Contrary to Sankey’s central assumption, incommensurability does not imply incomparability of content, nor threaten scientific realism by challenging the rationality of theory comparison. Moreover, Sankey equivocates between reference to specific entities by statements used to test theories and reference to kinds by theories themselves. This distinction helps identify and characterize the genuine threat that incommensurability poses to realism, which is ontological discontinuity as evidenced in the historical record: Successive theories reclassify objects into mutually exclusive sets of kinds to which they refer. That is why claiming that scientific progress is an increasingly better approximation to truth is difficult to justify. Similarly, Sankey’s attack on neo-Kantian antirealist positions is based on his misunderstanding of some of the central terms of those positions, making most of his attack on them ineffectual, including his diagnosis of their incoherence. We conclude by reiterating our conviction that in this debate meta-incommensurability plays an important role.  相似文献   

17.
Turner [The past vs. the tiny: Historical science and the abductive arguments for realism. Studies in History and Philosophy of Science 35A (2004) 1] claims that the arguments in favor of realism do not support with the same force both classes of realism, since they supply stronger reasons for experimental realism than for historical realism. I would like to make two comments, which should be seen as amplifications inspired by his proposal, rather than as a criticism. First, it is important to highlight that Turner’s distinction between ‘tiny’ and ‘past unobservables’ is neither excluding nor exhaustive. Second, even if we agreed with everything that Turner says regarding the arguments for realism and their relative weight in order to justify the experimental or historical version, there is an aspect that Turner does not consider and that renders historical realism less problematic than experimental realism.  相似文献   

18.
‘Epistemic structural realism’ (ESR) insists that all that we know of the world is its structure, and that the ‘nature’ of the underlying elements remains hidden. With structure represented via Ramsey sentences, the question arises as to how ‘hidden natures’ might also be represented. If the Ramsey sentence describes a class of realisers for the relevant theory, one way of answering this question is through the notion of multiple realisability. We explore this answer in the context of the work of Carnap, Hintikka and Lewis. Both Carnap and Hintikka offer clear structuralist perspectives which, crucially, accommodate the openness inherent in theory change. Unfortunately there is little purchase for a viable form of realism in either case. Lewis’s approach, on the other hand, offers more scope for realism but, as we shall see, concerns arise as to whether a relevant form of structuralism can be maintained. In particular his thesis of Ramseyan humility undermines certain conceptions of scientific laws that the structural realist might naturally cleave to. Our overall conclusion is that the representational device of Ramsey sentence plus multiple realisability can accommodate either the structuralist or realist aspects of ESR but has difficulties capturing both.  相似文献   

19.
I bring out the limitations of four important views of what the target of useful climate model assessment is. Three of these views are drawn from philosophy. They include the views of Elisabeth Lloyd and Wendy Parker, and an application of Bayesian confirmation theory. The fourth view I criticise is based on the actual practice of climate model assessment. In bringing out the limitations of these four views, I argue that an approach to climate model assessment that neither demands too much of such assessment nor threatens to be unreliable will, in typical cases, have to aim at something other than the confirmation of claims about how the climate system actually is. This means, I suggest, that the Intergovernmental Panel on Climate Change’s (IPCC׳s) focus on establishing confidence in climate model explanations and predictions is misguided. So too, it means that standard epistemologies of science with pretensions to generality, e.g., Bayesian epistemologies, fail to illuminate the assessment of climate models. I go on to outline a view that neither demands too much nor threatens to be unreliable, a view according to which useful climate model assessment typically aims to show that certain climatic scenarios are real possibilities and, when the scenarios are determined to be real possibilities, partially to determine how remote they are.  相似文献   

20.
Scientific realism is fundamentally a view about unobservable things, events, processes, and so on, but things can be unobservable either because they are tiny or because they are past. The familiar abductive arguments for scientific realism lend more justification to scientific realism about the tiny than to realism about the past. This paper examines both the “basic” abductive arguments for realism advanced by philosophers such as Ian Hacking and Michael Devitt, as well as Richard Boyd’s version of the inference to the best explanation of the success of science, and shows that these arguments provide less support to historical than to experimental realism. This is because unobservably tiny things can function both as unifiers of the phenomena and as tools for the production of new phenomena, whereas things in the past can only serve as unifiers of the phenomena. The upshot is that realists must not suppose that by presenting arguments for experimental realism they have thereby defended realism in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号