首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 656 毫秒
1.
利用电导实验技术,跟踪观察两性树脂吸附低浓度游离酸的行为,讨论了酸浓度和外加盐等因素对吸附的影响,利用固-液相互作用方程,求取吸附剂-吸附质相互作用能,实验结果表明,两性树脂吸附低浓度游离酸的过程是遵循单分子层机制进行的,表观吸附速率常数随着吸附质浓度和外加盐离子强度的增大而减少,并且与吸附剂-吸附质相互作用(-U)线性相关。  相似文献   

2.
环氧酚醛树脂(F44)经多胺交联固化得到了胺固化酚醛型螯合树脂,测定了该树脂在不同温度、浓度、pH值等条件下对铜离子的吸附性能。结果表明,树脂对Cu^2 具有较强的吸附能力和较快的吸附速率,表观吸附速率常数为0.0293s^-1,吸附符合Langmuir吸附等温式,且对微量Cu^2 具有较好的富集作用。  相似文献   

3.
CCCS与ECCS树脂对Au(Ⅲ)吸附性能的比较   总被引:5,自引:1,他引:4  
分别以环硫氯丙烷和环氧氯丙烷作为交联剂,合成交联壳聚糖树脂,测定其对Au(Ⅲ)的静态吸附性能.采用正交试验法全面考察了环硫氯丙烷交联壳聚糖(CCCS)树脂和环氧氯丙烷交联壳聚糖(ECCS)树脂吸附Au(Ⅲ)过程中,各主要因素对吸附性能的影响.结果表明,环硫氯丙烷交联壳聚糖树脂比环氧氯丙烷交联壳聚糖树脂所能适应的pH值、温度、初始离子浓度等条件范围更广,且在同样吸附条件下,环硫氯丙烷交联壳聚糖树脂比环氧氯丙烷交联壳聚糖树脂有更优良的吸附性能.环硫氯丙烷交联壳聚糖树脂对Au(Ⅲ)的吸附量可达296.67μg/mg,吸附率可达98.1%.  相似文献   

4.
研究了8-羟基喹啉螯合树脂(PS-HQ)在HAc-NaAc体系中对铅离子的吸附性能.结果表明,该树脂吸附Pb2 的最佳pH=4.0,吸附容量4.56 mg/g树脂.表观速率常数k288=1.52×10-4s-1,一次吸脱回收率达94.9%.吸附过程符合Langmuir和Freundlich模型.  相似文献   

5.
通过静态吸附实验,研究了大孔交联聚(对乙烯基苄基丁二酰亚胺)树脂(简称丁二酰亚胺树脂)对苯酚和水杨酸等酚酸类物质的吸附热力学及动力学特性.结果表明,丁二酰亚胺树脂对苯酚和水杨酸具有良好的吸附性能,在研究的浓度范围内,吸附平衡数据符合Langmuir和Freundlich等温吸附方程.相关系数R2都在0.99左右,吸附为自发、放热的物理吸附过程.吸附速率符合Lagergren准一级动力学方程,吸附速率随着温度的升高而增大,吸附表观活化自由能都小于40 kJ/mol.  相似文献   

6.
球形壳聚糖树脂对含重金属离子废水的吸附性能研究   总被引:23,自引:0,他引:23  
系统研究了球形交联壳聚糖树脂及分子印迹壳聚糖树脂对去除水体中重金属离子的吸附特性。研究结果表明:壳聚糖树脂交联后,在酸中稳定性增强 ,可重复使用达10次,吸附容量没有明显降低;分子印迹壳聚糖树脂对Ni2+、Zn2+、Cu2+等特定金属离子的吸附容量比非分子印迹壳聚糖树脂提高了1倍左右;同时球形交联壳聚糖树脂与商用吸附树脂相比,两者对Ni2+与柠檬酸镍的吸附容量相当。  相似文献   

7.
亚胺基二乙酸树脂对锰(Ⅱ)的吸附性能及其机理   总被引:1,自引:0,他引:1  
研究了亚胺基二乙酸树脂对锰(Ⅱ)的吸附行为及其机理.结果表明,在pH=5.6时树脂对锰的吸附效果最佳.298K时静态饱和吸附容量为106.7mg/g,表观吸附速率常数为1.315×10-5s-1,表观吸附活化能是35.6kJ/mol,树脂功能基与锰(Ⅱ)的配位摩尔比为2:1.化学分析及红外光谱表明树脂功能基上的氧原子与Mn2 发生配位键合.  相似文献   

8.
用线型环氧酚醛树脂(F44)与苯基硫脲合成了酚醛型苯基硫腺螯合树脂(F44-PTU)。研究了该树脂对Au(Ⅲ)的静态及动态吸附性能。结果表明,该树脂对Au(Ⅲ)具有较快的吸附速率,其表观吸附速率常数为0.0055s^-1,树脂的吸附为吸热过程,在有其他金属离子共存时,树脂对Au(Ⅲ)具有较好的吸附选择性,一定条件下,树脂可以洗脱再生。  相似文献   

9.
4-氨基吡啶树脂对锌的吸附及解吸性能的研究   总被引:2,自引:0,他引:2  
研究了4-氨基吡啶树脂吸附锌的行为,结果表明在pH=2.63的HAc-NaAc体系中,树脂对锌(Ⅱ)有较好的吸附,其静态饱和吸附容量为58.4mg/g树脂,表观速率常数k298=3.42×10-5s-1,用pH=1-4的不同浓度盐酸洗脱,洗脱率均达100%。  相似文献   

10.
交联壳聚糖的合成及其对Cu2+的去除效果   总被引:4,自引:0,他引:4  
为了使化学改性后的壳聚糖既具有较高的吸附效率,又能在较广泛的pH值范围内使用,将壳聚糖与硫氰酸铵(NH4CNS)、一氯乙酸(CH2ClCOOH)进行接枝反应,引入硫脲基和羧基两个配位中心,再与戊二醛交联生成具有网状结构的交联壳聚糖,红外光谱图表明发生了预期的接枝和交联反应.通过正交实验确定最佳的接枝奈件和交联奈件,并用合成的交联壳聚糖吸附Cu^2 .研究结果表明,壳聚糖与硫氰酸氨、一氯乙酸的摩尔比为1:1.2:1.2、50C、反应2h条件下进行接枝反应的产物,在理论交联度为30%、反应体系pH=8、反应4h奈件下与戊二醛进行交联,交联产物得率较高,对Cu^2 去除效率为98.10%.  相似文献   

11.
交联壳聚糖树脂的制备工艺及性能表征   总被引:5,自引:0,他引:5  
以戊二醛为交联剂,利用悬浮聚全法合成了新型壳聚糖树脂,考虑了操作条件对合成树脂性能的影响,扫描电镜显示,树脂的表面结构随着交联剂浓度提高而改善,提高油水体积比第一个峰值小可显著提高树脂成球经,降低树脂粒径;随壳聚糖浓度提高,树脂强度和在但孔度仅略有降低,利用5%壳聚糖溶液,可合成高强度、高孔度的壳聚糖树脂。  相似文献   

12.
在稀醋酸溶液中,微波辐射下壳聚糖与Zn^2 反应制备了壳聚糖Zn^2 配合物,然后将制得的配合物与环氧氯丙烷在微波辐射下进行交联反应后,用稀酸除去Zn^2 ,合成了具有Zn^2 离子孔穴的交联壳聚糖树脂。实验考察了该树脂对一些金属离子的吸附性能,并对影响树脂吸附性能的因素进行了研究。  相似文献   

13.
以壳聚糖、海藻酸钠为原料,环氧氯丙烷为交联剂制备了交联壳聚糖/海藻酸钠吸附剂,并采用红外光谱对其结构进行了表征.考察了吸附时间、pH值、吸附剂用量和交联度等因素对吸附容量的影响,研究了该吸附剂的吸附性能,同时对吸附动力学进行了研究.结果表明:pH值为4.0~6.0、吸附时间为120min、在100mL 50mg/L的Cu2+溶液中吸附剂的投加量为0.10g时,平衡吸附容量达46.4 mg/g;该等温吸附在低浓度时的吸附过程较符合Freundlich模型,在高浓度时较符合Langmuir模型;吸附过程动力学符合拟二级动力学方程,线性相关性良好(r2=0.944 4).  相似文献   

14.
以壳聚糖和酸改性粉煤灰为原料,制备壳聚糖交联酸改性粉煤灰吸附剂.利用SEM、XRD、FTIR对其结构进行表征,考察其制备及吸附条件对Mn2+去除率的影响.结果表明:制备时,当壳聚糖与酸改性粉煤灰的质量比为1∶10,交联剂用量为2 mL/g;吸附时,废水pH为9,吸附时间为90 min,吸附剂用量为10 g/L时,Mn2+去除率为98.7%.  相似文献   

15.
壳聚糖衍生物的制备及其对Cr(Ⅵ)离子的吸附   总被引:8,自引:0,他引:8  
采用化学法对壳聚糖进行改性,分别制备了交联壳聚糖、丁烷基壳聚糖和O-羧甲基壳聚糖,用γ射线辐照降解制备了低摩尔质量的壳聚糖,研究了它们对废水中较难处理的污染物Cr(Ⅵ)的吸附情况,壳聚糖对Cr(Ⅵ)吸附的最佳pH值范围为5.0~6.0,最佳吸附时间大约为2h,每克壳聚糖可吸附约3mg Cr(Ⅵ),吸附率最大可达90%以上。交联壳聚糖、丁烷基壳聚糖和低摩尔质量壳聚糖对Cr(Ⅵ)的吸附效果都比壳聚糖本身要好得多:交联壳聚糖吸附1h即可达到吸附饱和;丁烷基壳聚糖吸附Cr(Ⅵ)的最佳pH值出现在5.0附近,更能适应酸性环境;辐照降解后,壳聚糖在(0.4~0.8)×105g/mol的范围内存在一个吸附最大值。  相似文献   

16.
海绵铁经酸浸活化处理或外加镍盐溶液活化处理,可以显著提高其降解水中三氯乙酸(TCAA)的反应速率。实验结果表明,海绵铁降解TCAA反应属于一级反应,酸浸活化和镍盐活化处理都没有改变海绵铁降解三氯乙酸的反应级数,对反应活化能的影响也不大,但都可以显著提高其表观反应速率常数kobs,经酸浸处理和经镍盐活化处理后海绵铁降解TCAA表观反应速率常数分别提高了3倍和8倍。此外,减小海绵铁粒径,提高单位水体海绵铁用量(mFe/VTCAA)也有利于提高海绵铁对三氯乙酸的降解速率。对于20℃,海绵铁用量为mFe/VTCAA=50 g/L时,经镍盐活化处理的海绵铁降解TCAA表观反应速率常数kobs可达到0.855 h-1。  相似文献   

17.
本文采用反相悬浮交联法制备了壳聚糖微球,并以3-氯-2-羟基丙基三甲基氯化铵为改性剂在微球上引入了季铵盐基团.考察了改性后的微球对染料酸性媒介黑PV(PV)的吸附性能.实验结果表明季铵化壳聚糖微球对偶氮染料PV有较好的吸附能力.实验条件下,最大平衡吸附量为1759mg/g,等温吸附很好地符合Langmuir等温方程,表明为单分子层吸附.吸附量受染料初始浓度、温度和溶液pH等因素影响.负载染料的微球容易洗脱,洗脱再生后的微球可重复使用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号