首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对汽油/加氢催化生物柴油(HCB)混合燃油可改善汽油直喷压燃模式中低负荷着火困难和燃烧不稳定的现象,基于燃油分子结构和理化特性相似原则,提出了正十六烷作为加氢催化生物柴油的表征燃料.采用多种简化方法对正十六烷详细机理(POLIMI_1 412)进行简化,并与汽油表征燃料骨架机理以及氮氧化物子机理进行耦合,获得了82个组分和370步基元反应的汽油/HCB混合燃油简化机理.采用反应路径分析和敏感性分析方法,对部分反应的反应速率常数进行优化.结果表明:对着火延迟期的敏感性分析发现,各反应的敏感性随温度和当量比变化显著;低温工况下,大多数低温反应对着火起控制作用,而对于层流火焰速度,主要是小分子反应起控制作用;通过对简化机理的着火延迟期、层流火焰速度和组分摩尔分数进行对比验证,以及对简化机理在压燃发动机仿真中的适用情况进行验证,发现简化后获得机理可以很好预测汽油/HCB混合燃油着火燃烧特性.  相似文献   

2.
为了研究理化特性强烈互补的甲醇/加氢催化生物柴油(HCB)混合燃料的单液滴蒸发微爆特性,本文针对纯加氢催化生物柴油M0以及两种不同甲醇体积比的三元混合燃油M15(15%甲醇、17%辛醇和68%HCB)和M25(25%甲醇、17%辛醇和58%HCB)在不同环境温度下进行了详细的试验研究。首先,通过微观几何形态和热重试验对混合燃油的理化属性进行了分析。然后,在一个恒温加热炉中采用挂滴法结合高速显微成像技术,获得了液滴在蒸发过程中的形态、平方直径和气泡比等蒸发特性。研究得出:随着甲醇含量增加,混合燃油中分散相液滴粒径增大、数目增多,蒸发速率加快;随着甲醇比例的增加,混合燃油液滴内部出现更加剧烈的醇相气泡膨胀并发生微爆现象,且微爆后喷射出的子液滴粒径大大提高,显著缩短了母液滴的寿命;随着环境温度的增加,微爆频率增加,更显著地加快了液滴的蒸发速率。本文结果将对甲醇/HCB混合燃料喷雾燃烧特性以及该混合燃料的发动机适用性研究提供理论参考。  相似文献   

3.
以自主开发的催化柴油加氢脱芳催化剂ARO-1(Aromatics Ring Opening),在15mL小型加氢试验装置上对大庆催化柴油进行加氢脱芳。结果表明,ARO-1催化剂具有良好的加氢性能,脱芳率为58.0%,脱硫率为97.8%,脱氮率为99.8%,密度降低0.0416g/cm3,而且柴油产品收率可以达到98.0wt%,说明ARO-1是性能优异的催化柴油加氢脱芳烃催化剂。  相似文献   

4.
为了得到使用生物柴油/柴油混合燃料的最佳喷油提前角,对不同角度混合燃料的燃烧和排放特性进行了研究。结果表明:喷油滞后(提前),燃烧压力、压力升高率与瞬时燃烧放热率降低(增加),曲线后移(前移)。NOx排放降低(增加),且随着负荷的增加,降低(增加)的幅度增大。原机条件下混合燃料烟度最低,喷油提前和滞后都会引起烟度的增加。喷油适当滞后(降低3°)可以在烟度增加不多的情况下有效控制生物柴油/柴油混合燃料的NOx排放,同时压力升高率的降低会使发动机工作更加柔和。  相似文献   

5.
随着石油煤炭等不可再生资源的大量消耗,环境污染和气候异常等问题愈演愈烈.如何解决人类可持续发展和日益增长的能源需求之间的尖锐矛盾,是需要深思和解决的重大问题.生物油是由农业废弃物经快速热解后,催化加氢精制后得到的优质能源,能够直接用作机车燃料,具有绿色、可持续、来源广泛等优势.因此,生物油的催化加氢精制研究是实现其替代石油煤炭产品的核心内容.文章通过对目前研究成果的调研,分析了研究中存在的问题,并提出了应对策略,期望能为生物油的催化加氢研究提供参考.  相似文献   

6.
吴闯 《科学技术与工程》2012,12(32):8695-8698,8711
以猪油为原料,选用KOH为碱性催化剂制备生物柴油。经单因素实验及正交实验研究了油醇比、反应温度、反应时间和催化剂用量对生物柴油产率的影响。结果表明:在实验条件下各因素对生物柴油产率影响的大小依次为:油醇体积比>催化剂用量>反应温度>反应时间。最佳反应条件为:油醇体积比4∶1,反应温度60℃,KOH用量为1.1%(油重),反应时间为45 min,产率为91.94%,脂肪酸甲酯含量为96.3%,精制后总甘油含量0.23%。  相似文献   

7.
磷酸催化地沟油制备生物柴油的研究   总被引:8,自引:0,他引:8  
研究了以磷酸为催化剂,地沟油与甲醇发生酯交换反应制取生物柴油的反应条件对产物收率的影响.通过正交实验得出了制备生物柴油的最佳条件:反应温度为70 ℃,醇油摩尔比为30∶1,催化剂用量为原料油质量的8%,反应时间为5 h.在此条件下生物柴油的收率可达85%以上.  相似文献   

8.
合成一种离子液体SM IA,用1HNMR和DSC对其进行了表征,以其作为催化剂,研究其对豆油中亚油酸和棕榈酸的酯交换反应的催化性能.主要以大豆油和甲醇作为反应物,以酯交换反应制备脂肪酸甲酯,分别考察了催化剂用量,醇用量,反应时间,大豆油的预热时间,反应转速,温度等因素对脂肪酸甲酯产率的影响.选用十一酸甲酯为内标物,利用气相色谱分析,计算反应的转化率.通过气质联用(GC-MS)确定产物的主要成分为棕榈酸甲酯和亚油酸甲酯.  相似文献   

9.
辛癸酸甘油酯催化加氢脱氧反应规律   总被引:3,自引:0,他引:3  
以辛癸酸甘油酯为模型化合物,采用高压流动反应装置考察辛癸酸甘油酯在金属硫化物加氢催化剂CoMo/γ-Al2O3,NiMoP/γ-Al2O3,NiMoP/γ-Al2O3-HUSY和贵金属双功能催化剂Pt/SAPO-11催化剂上的加氢脱氧反应规律.结果表明:辛癸酸甘油酯在加氢催化剂上的反应包括加氢饱和、脱羧、异构化和裂化反应,主要产物为烷烃;采用Pt/SAPO-11催化剂的催化加氢产物中异构化烷烃比例明显提高,脱羧反应和裂解反应得到明显抑制.  相似文献   

10.
利用缸内燃烧可视化技术研究了催化柴油的碳烟生成过程和浓度分布规律,并分析了高压共轨柴油机燃用催化柴油的燃烧特性和烟度排放.结果表明:随着CeO_2质量浓度的增大缸内燃烧时碳烟火焰出现位置提前,消失的时刻更早;与燃用纯柴油相比,催化柴油的缸内碳烟生成区域减小,碳烟浓度降低,碳烟面积占有率比较小,而柴油机排气烟度有所降低,且随着负荷的增加改善效果更明显;纳米CeO_2颗粒会改善燃油燃烧过程并提高放热速率,柴油机燃用催化柴油后燃烧始点提前,缸内压力峰值、放热率峰值和压力升高率峰值均增大,且对应相位更加靠近上止点.  相似文献   

11.
制备了一种水溶性正丁基吡啶硫酸氢盐离子液体,运用红外光谱、热重分析等方法对所制备离子液体进行表征,数据表明与预期结构相符.以该离子液体为催化剂催化小桐子油脂肪酸制备生物柴油,考察了试验反应温度、甲醇与小桐子油脂肪酸体积比、离子液体催化剂用量等因素对试验转化率的影响.结果表明在反应温度100℃、催化剂用量为小桐子油脂肪酸质量的6%、醇酸体积比1∶1、反应时间75 min的条件下反应转化率可达96%以上.离子液体稳定性较好,循环使用6次依然保持较高的催化转化率.  相似文献   

12.
制备了一种水溶性正丁基吡啶硫酸氢盐离子液体,运用红外光谱、热重分析等方法对所制备离子液体进行表征,数据表明与预期结构相符.以该离子液体为催化剂催化小桐子油脂肪酸制备生物柴油,考察了试验反应温度、甲醇与小桐子油脂肪酸体积比、离子液体催化剂用量等因素对试验转化率的影响.结果表明在反应温度100 ℃、催化剂用量为小桐子油脂肪酸质量的6%、醇酸体积比1:1、反应时间75 min的条件下反应转化率可达96%以上.离子液体稳定性较好,循环使用6次依然保持较高的催化转化率.  相似文献   

13.
为了研究加氢生物柴油-乙醇-柴油三元燃料的低温性能,基于热力学相平衡模型,计算了该三元燃料的析晶点和析晶量,同时对比了加氢生物柴油-柴油二元燃料的析晶点和析晶量,探究了乙醇对该二元燃料低温性能的影响。试验结果表明,相比加氢生物柴油-柴油二元燃料,加氢生物柴油-乙醇-柴油三元燃料的析晶点均有不同程度的降低,三元燃料PHC5E5、PHC10E10、PHC15E15、PHS5E5、PHS10E10和PHS15E15的析晶点分别降低了4.5、5.7、6.1、4.3、5.3、6.1 K,所对应三元燃料在不同温度下析晶量也有不同程度的降低。在初始析晶温度下,三元燃料中的乙醇与生物柴油同时开始析晶,这说明乙醇以共晶方式与高熔点组分同时析出,改变了高熔点组分在晶核形成、生长过程中的结晶趋向和结晶形态,延滞了三元燃料在低温过程中的析晶趋势;未结晶的乙醇大量分布在燃料液相以及网状和片状晶体间隙之中,一定程度上提高了已结晶组分在基液中的溶解度。这两者共同改善了加氢生物柴油-乙醇-柴油三元燃料的低温性能。该研究为优化加氢生物柴油的低温性能提供了一种有效可靠的方法。  相似文献   

14.
碱性脂肪酶催化大豆油合成生物柴油   总被引:1,自引:0,他引:1  
以叔丁醇为反应介质,研究碱性脂肪酶加入量、醇油摩尔比、甲醇加入次数和加入时间、反应温度、反应时间对酯交换合成生物柴油的转化率影响,得到最佳的反应条件:酶的加入量为每1mmol大豆油加入256U;醇油摩尔比4:1;反应温度32℃;摇床转速150r/min;反应时间48h;甲醇分四次加入(t=0,4,12,28h),每次加入总量的1/4。用气相色谱测定,其转化率达到90.1%。  相似文献   

15.
针对目前柴油机替代燃料多为单一项,且替代燃料性能各有特点的状况,将F-T柴油和生物柴油掺混燃烧,通过试验研究,分析了0#柴油与3种混合柴油(B20F,B50F,B100)在2 400r/min不同负荷下的燃烧特性。结果表明,混合燃料随着生物柴油添加比例的增加,滞燃期变长,燃烧压力峰值、压力峰值相位、压力升高率峰值及放热率峰值均逐渐增大,但均比0#柴油低;且随着负荷的增加,燃烧压力、压力升高率和瞬时放热峰值均先增后减;混合燃料的碳烟排放明显降低,B50F和B80F的NOx排放与0#柴油接近,B20F的NOx排放比0#柴油降低了2.1%~16.7%。B20F是一个较好的混合比例,是一种较好的替代燃料。  相似文献   

16.
采用硫化型NiMo/活性白土为催化剂,以非粮植物油麻疯树油为原料制备第二代生物柴油.利用等体积浸渍和CS2原位活化结合的方法制备出硫化型NiMo/活性白土催化剂,并通过XRD、BET、Py-FTIR和NH3-TPD等技术对其结构和性能进行表征.考察了不同反应温度、催化剂用量、反应初始氢压、反应时间下麻疯树油的转化率及生成C15-C18烃类的选择性.实验结果表明,最优的反应条件为:反应温度300℃、催化剂质量分数为7.5%、反应初始氢压3.5 MPa和反应时间60 min,在该反应条件下,麻疯树油的转化率达到95.19%,生成C15-C18烃类的选择性为84.53%.对最优油品的组分进行了分析,在硫化型NiMo/活性白土催化剂作用下,麻疯树油经加氢饱和、加氢脱氧、脱羰及裂化等反应生成含C15-C18链烃,即第二代生物柴油.  相似文献   

17.
以自制固体酸催化剂ZnCl2/膨润土催化大豆油制备生物柴油,考察了反应条件对生物柴油产率的影响.结果表明:在ZnCl2负载量30%、催化剂用量5%、醇油物质的量比10∶1、反应温度65℃和反应时间5h时,生物柴油的产率可以达到82%以上.自制生物柴油的性能指标完全达到0#普通柴油标准和柴油机燃料调和用生物柴油标准要求.  相似文献   

18.
微波辅助催化制备生物柴油的研究   总被引:2,自引:0,他引:2  
研究在微波辐射下,脂肪酸和甲醇在自制催化剂作用下酯化反应制备生物柴油的工艺.结果表明:最佳工艺条件为微波输出功率160W,微波反应时间为110 min,醇油物质的量比为5∶1,催化剂用量为2.50g(相对于100 g的脂肪酸),在此条件下反应转化率达到97.08%.与水浴加热相比,采用微波辐射加热制备生物柴油的反应速度快、耗能少、转化率高.  相似文献   

19.
降低柴油中氮含量对于减少汽车尾气排放从而保护环境具有十分重要的意义。介绍了加氢脱氮催化剂的研究进展。  相似文献   

20.
对不同含量Ni-W、Ni-Mo金属组合对加氢脱芳烃催化剂性能的影响进行了研究,得出含有w(NiO)=4%和w(WO3)=26%催化剂的加氢脱芳烃效果最好的结论.同时认为先浸渍W,再浸渍Ni的制备方法有利于增强催化剂的脱芳率,且金属在载体上分散性较好.处理FCC柴油的结果表明,研制催化剂的加氢脱芳烃性能优于一种已经工业化的参比剂.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号