首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
 利用最小二乘方法和临近支持向量机(PSVM)算法,并结合双胞支持向量机(TSVR),提出了最小二乘双胞支持向量回归机(LSTSVR).作为对照,TSVR需要求解2个二次规划问题,而LSTSVR仅需求解2个线性方程组.最后利用不同的实例验证了所提算法的可行性和有效性.  相似文献   

2.
解回归问题通常采用平方损失函数,传统方法在函数类的选择上是一个难点。采用ε-不敏感损失函数,用光滑的支持向量机解回归问题。数值实验表明,只需选一个核函数就可较好地解决这个难点,使支持向量的个数明显少于样本点的个数,简化了回归函数的表达式,回避了传统回归方法选择函数类的困难。所以,光滑支持向量回归机是解决回归问题的一个有效方法。  相似文献   

3.
支持向量机理论及其应用   总被引:4,自引:1,他引:4       下载免费PDF全文
作为当前国际机器学习前沿热点的支持向量机是一种新型的机器学习算法,具有卓越的学习效果。文中分析了该方法的核心思想及常用训练算法,并给出其具体应用。  相似文献   

4.
支持向量机研究   总被引:2,自引:0,他引:2  
支持向量机是一种新型的机器学习方法,由于其出色的学习性能,该技术已成为国际机器学习领域新的研究热点,首先介绍了统计学习理论和以该理论为基础的支持向量机,然后对线性、非线性支持向量机进行了介绍,给出了一些常用的训练算法.  相似文献   

5.
使用回归分析策略以文档满足用户的信息需求程度作为回归分析的目标值,利用回归支持向量机构建了信息检索模型.新模型不仅提供了融合不同来源特征的灵活框架,而且由于使用回归支持向量机寻找具有ε不敏感损失的回归函数,因此具有良好的泛化性能.实验表明,新模型性能优于目前主流的基于语言模型的信息检索方法.  相似文献   

6.
支持向量回归机(SVR)和孪生支持向量回归机(TSVR)是机器学习中的常用算法.受TSVR启发,针对SVR训练速度和预测精度问题,提出一种新型非平行平面支持向量回归机(NNHSVR).NNHSVR的优势如下:(1)NNHSVR模型构造的是两个较小规模的二次规划问题,最终求解得到2个非平行平面,训练速度较SVR快;(2)NNHS-VR在目标函数中加入调节参数u,对边界函数进行约束,使得模型对离群点更加鲁棒.人工数据集和UCI数据集上的实验表明:NNHSVR算法不仅有较好的泛化性能,而且训练速度快.将NNHSVR算法应用于传染病预测问题,取得了比传统传染病预测模型BP神经网络更好的效果.  相似文献   

7.
讨论了支持向量机回归与v-支持向量机分类解的关系,证明了对给定的v-支持向量机分类问题的解,通过选择适当参数,存在一个支持向量机回归问题的解与它等价.  相似文献   

8.
支持向量机的算法研究   总被引:1,自引:0,他引:1  
支持向量机(support vector machine,SVM)是20世纪90年代发展起来的一种新型机器学习方法,是在统计学习理论基础上发展起来的一种新的数据挖掘方法,已广泛应用于模式识别与回归分析.并已成为国际机器学习界的研究热点.本文主要讨论其基本原理与SVM训练算法.  相似文献   

9.
支持向量机的算法研究   总被引:1,自引:0,他引:1  
支持向量机(support vector machine,SVM)是20世纪90年代发展起来的一种新型机器学习方法,是在统计学习理论基础上发展起来的一种新的数据挖掘方法,已广泛应用于模式识别与回归分析。并已成为国际机器学习界的研究热点。本文主要讨论其基本原理与SVM训练算法。  相似文献   

10.
讨论了支持向量机回归与v-支持向量机分类解的关系,证明了对给定的v-支持向量机分类问题的解,通过选择适当参数,存在一个支持向量机回归问题的解与它等价.  相似文献   

11.
The goal in reinforcement learning is to learn the value of state-action pair in order to maximize the total reward. For continuous states and actions in the real world, the representation of value functions is critical. Furthermore, the samples in value functions are sequentially obtained. Therefore, an online sup-port vector regression (OSVR) is set up, which is a function approximator to estimate value functions in reinforcement learning. OSVR updates the regression function by analyzing the possible variation of sup-port vector sets after new samples are inserted to the training set. To evaluate the OSVR learning ability, it is applied to the mountain-car task. The simulation results indicate that the OSVR has a preferable con- vergence speed and can solve continuous problems that are infeasible using lookup table.  相似文献   

12.
在保证足够信息量的前提下,针对合理减少气象观测站的实际问题,首先利用主成分分析(PCA) 降低样本数据的维数,其次利用支持向量回归机(SVR)对样本进行有效的回归,然后结合优化软件lingo对凸二次规划问题(与支持向量回归机相对应)进行求解,最终得出基于主成分分析-支持向量机回归预测优化模型。  相似文献   

13.
木材导热系数的支持向量回归预测   总被引:1,自引:0,他引:1  
根据木材在不同影响因素(密度、含水率和比重)下沿横纹方向(包括径向和弦向)的导热系数的实测数据集,应用基于粒子群算法(PSO)寻优的支持向量回归(SVR)方法,建立了木材沿不同方向的导热系数的预测模型,并与通过类比法(ANA)导出的理论模型和BP神经网络(BPNN)模型进行了比较。结果表明:基于相同的训练样本和检验样本,木材导热系数的SVR模型比其ANA模型或BPNN模型具有更高的预测精度;增加训练样本数有助于提高SVR预测模型的泛化能力;基于留一交叉验证法(LOOCV)的SVR模型预测的最大绝对百分误差(MPE)、平均绝对误差(MAE)和平均绝对百分误差(MAPE)均为最小。因此,SVR是一种预测木材导热系数的有效方法。  相似文献   

14.
基于层次型支持向量机的人脸检测   总被引:25,自引:0,他引:25  
复杂背景中的人脸检测可广泛应用于人脸识别、人机交互等方面。但目前大部分人脸检测方法中存在分类器训练困难和检测计算量大等问题。提出了一种基于层次型支持向量机的正面直立人脸检测方法,在这两方面作了改进。这种结构的分类器由一个线性支持向量机组合和一个非线性支持向量机组成,由前者在保证检测率的情况下快速排除掉图像中绝大部分非人脸区域,后者对人脸候选区域进行进一步确认。在卡内基梅隆CMU等数据库上的实验证明了这种方法不仅具有较高的检测率和较低的误检率,而且具有较小的计算量。  相似文献   

15.
以支持向量回归为主要算法,讨论了圆锥螺纹各参数的图像检测方法。采用边缘保持滤波、二值变换等算法,对圆锥螺纹图像进行处理,获得牙形直线部分的像素表征,并以此构成训练集,进行支持向量回归,得到了螺纹牙形直线方程的亚像素表示,据此对锥螺纹的主要参数进行检测,大大降低了CCD的离散性和系统噪声对测量结果的影响。实验表明,本方法具有测量速度较快,测量精度较高的特点。  相似文献   

16.
基于支持向量回归(Support Vector Regression,简称SVR)的非线性时间序列预测是智能预测的重要前沿课题,在许多领域有着非常广泛的应用前景。文章介绍了SVR基本理论和方法,从金融、电力、交通、旅游等领域的典型应用对基于SVR的非线性时间序列预测进行了综述,分析了目前SVR在核函数、自由参数选择和输入数据处理方面存在的问题及其在应用领域进一步研究的方向。  相似文献   

17.
Weighted Proximal Support Vector Machines: Robust Classification   总被引:2,自引:0,他引:2  
Despite of its great efficiency for pattern classification, proximal support vector machines (PSVM), a new version of SVM proposed recently, is sensitive to noise and outliers. To overcome the drawback, this paper modifies PSVM by associating a weight value with each input data of PSVM. The distance between each data point and the center of corresponding class is used to calculate the weight value. In this way, the effect of noise is reduced. The experiments indicate that new SVM, weighted proximal support vector machine (WPSVM), is much more robust to noise than PSVM without loss of computationally attractive feature of PSVM.  相似文献   

18.
粗集与支持向量机联合建模及在开采沉陷预计中的应用   总被引:1,自引:1,他引:1  
地表沉陷与地质采矿因素之间存在复杂的非线性关系,人们通常采用概率积分法、神经网络等研究沉陷的规律性,但预计效果往往不够理想。本文采用粗集及支持向量机技术对其进行研究,首先应用粗集理论进行了岩移影响因素分析,给出了各影响因素的支持度,然后运用支持向量机预测技术构建了支持向量机预测模型。最后用实例进行了预测分析并与传统方法进行了对比,结论表明,本文建立的模型具有网络运行稳定、精度更高的优点。  相似文献   

19.
使用与自组织神经网聚类相结合的支持向量回归机预测模型对矿体体素品位进行插值,并与多边形法、距离幂次反比法、克里格法进行对比验证. 结果表明,该预测模型进行品位插值具备很好的可行性和可靠性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号