共查询到18条相似文献,搜索用时 109 毫秒
1.
灰色模型GM(1,1)的一种新优化方法 总被引:7,自引:2,他引:7
根据灰色系统理论的新息优先原理,提出了将X(1)的第n个分量作为灰色微分模型的初始条件与优化背景值相结合的方法,对GM(1,1)模型进行了改进,改进后的模型既适用于低增长指数序列建模,也适用于高增长指数序列建模,尤其是对高增长指数序列,改进的GM(1,1)模型的模拟精度与预测精度都有提高,即使在发展系数|a|大于2时,新模型的拟合精度仍然很高. 相似文献
2.
基于Markov和GM(1,1)模型的土地利用结构预测 总被引:5,自引:2,他引:5
根据张掖市2003-2006年土地利用变更数据,分别采用Markov与灰色GM(1,1)模型,对全市2011年和2015年土地利用结构变化进行预测,并将所得结果相互验证、对比分析,以提高预测可信度。结果表明:到2015年张掖市耕地、牧草地和未利用地将持续减少,林地和建设用地呈增长趋势;土地利用类型由耕地、园地、牧草地和未利用地向林地、建设用地转化。表6,参8。 相似文献
3.
针对灰色预测模型的适应范围和优化问题,首先根据灰色GM(1,1)模型参数是灰的、可调的原理,提出了GM(1,1,β)模型的内涵型和参数包形式,分析了模型的若干性质,然后给出了模型的优化算法. 研究结果表明,GM(1,1,β)灰微分方程模型参数α的客观取值范围为(-∞,+∞),经典GM(1,1)模型参数α的客观取值范围为(-2,+2);发展系数α的客观取值范围是由背景值系数β 决定的,而与原始数据无关;灰微分方程模型完全适合齐次指数数列. 最后,以我国城镇居民家庭人均可支配收入的数据为例验证了GM(1,1,β)灰微分方程模型的有效性. 相似文献
4.
针对离散GM(1,1)模型的模拟序列未能反映出原始数据序列的级比动态变化这一问题,通过对原始数据序列的级比序列进行建模,建立基于级比序列的级比离散GM(1,1)预测模型。该模型较好地保留了原始序列级比的动态性,结合原始序列与级比序列的关系,获得原始序列的模拟值。数值计算结果表明,基于级比序列的离散GM(1,1)预测模型,无论在相对误差还是平均相对误差的变动幅度方面,都优于离散GM(1,1)模型。 相似文献
5.
背景值和初始条件同时优化的GM(1,1)模型 总被引:12,自引:0,他引:12
GM(1,1)模型是有偏差的灰指数模型,其精度取决于背景值的构造形式和初始条件的选取。已有的研究文献均是从一个侧面单独改进GM(1,1)模型,单独采用优化背景值方法或优化初始条件方法可以在一定程度上提高模型精度,因为两种改进方法完全独立。这里提出一种同时优化背景值和初始条件的新GM(1,1)模型,通过模拟数据的比较表明,新优化GM(1,1)模型有更高的精度。 相似文献
6.
针对灰色GM(1,1)预测模型提高精度的问题, 提出了新的背景值优化公式代替传统的背景值优化公式, 再进行边值修正的方法. 该方法采用新的背景值优化公式求出紧邻均值生成序列, 并使用均方误差和最小准则, 针对原始序列和生成序列进行边值的修正. 通过对优化后的模型实证测算, 验证了修正后的模型在提高预测精度上的可行性和有效性. 相似文献
7.
为了提高灰色GM(2,1)模型的预测精度,本文首先对灰色GM(2,1)模型的向前、向后差分进行线性组合出灰色GM(2,1,λ)模型,利用参数λ修正背景值;然后引入参数ρ对原始数列进行数乘变换,进一步将模型拓展为灰色GM(2,1,λ,ρ)模型.由于参数λ,ρ与误差之间为明显的非线性关系,难以解析,本文基于微粒群算法(PSO),给出PSO-GM(2,1,λ,ρ)优化方法.在该方法中,用λ,ρ构成一个二维的微粒群,以绝对的平均相对误差作适应度函数,以其最小为目标,求解最优的λ,ρ值.实例计算表明,该方法收敛速度快,预测精度高于普通模型,而且可满足实际需要. 相似文献
8.
为了研究灰色GM(1,1,α)模型中背景值的变化对模型相对误差的影响,分析了GM(1,1,α)模型的建模机理与过程,提出了该模型的二级参数包;通过模型的二级参数包重点讨论了背景值的变化与模型的发展系数、 灰色作用量之间的关系;从理论上得出了背景值与模型的发展系数、灰色作用量之间的具体表达式;进而得到了背景值与相对误 差之间的具体表达式,并研究了它们之间的变化关系,从而达到通过调整背景值的大小来减小模型相对误差的目的;最后通过实例对这一结论进行了验证. 相似文献
9.
基于粮食安全和GM(1,1)模型的耕地保有量研究——以甘肃省天水市为例 总被引:1,自引:0,他引:1
耕地保有量预测是土地利用总体规划的重要内容。以甘肃天水市为例,根据1996—2005年土地利用变更数据及人口、粮食统计数据,综合利用基于粮食安全出发的粮食需求法和GM(1,1)模型的数学方法两种方法来确定耕地保有量,并将所得结果相互验证、对比分析,以提高预测可信度。结果表明:天水市2010年和2020年的耕地保有量为508781hm2和463588hm2。图2,表4,参11。 相似文献
10.
离散GM(1,1)模型的特性与优化 总被引:2,自引:0,他引:2
GM(1,1)模型在对纯指数序列进行拟合时通常仍然存在偏差,对原始序列和发展系数有太多限制.离散GM(1,1)模型与原模型的很多性质很相似,可以看成是原模型的精确形式,而且对发展系数和原始序列没有非负限制,因此对于离散GM(1,1)模型的特性研究就极为重要.文章对离散模型模拟数据增长率特点、对指数序列的拟合以及数乘变换下的参数特性进行了理论证明.研究表明离散GM(1,1)模型可以完全拟合指数序列.数乘变换不改变原始序列的模拟精度,为解决灰色预测模型的病态性提供了思路.文章提出了分段修正离散GM(1,1)模型并对建模机理进行了证明.应用实例表明了该模型能够显著提高模拟精度. 相似文献
11.
12.
基于振荡序列的GM(1,1)模型 总被引:7,自引:1,他引:7
针对GM(1,1)模型对非负光滑单调序列的预测精度较高,而对振荡序列的预测效果不理想的情况.提出了先通过加速平移变换将振荡序列变为单调增加序列,然后再对加速平移变换后的序列进行加权均值生成变换,再以加权均值生成变换得到的序列建立GM(1,1)模型进行预测.通过具体算例的计算表明,这种方法能够提高GM(1,1)模型的预测精度,可应用于对振荡序列建立GM(1,1)模型,从而扩大了GM(1,1)模型的应用范围. 相似文献
13.
传统卡尔曼滤波器依赖目标运动状态的数学模型,当目标运动数学模型不精确或不能够用线性状态空间模型描述时,跟踪滤波会发散。针对这一问题,提出了一种基于GM(1,1)(Grey model)模型的跟踪卡尔曼滤波方法。在卡尔曼滤波过程中,迭代所需的预测值不再依赖所建立的目标运动状态方程,而是用前几个时刻的估计值建立灰色微分方程来预测下一时刻的值,其预测精度高,滤波性能提高,特别在目标机动的时间内跟踪滤波效果要好于传统方法。仿真结果表明,是一种可行的机动目标跟踪方法。 相似文献
14.
传统GM(1,1)模型存在不能预测波形序列的问题。在GM(1,1)模型和残差GM(1,1)模式的基础上引入了新陈代谢数组,经重新推导后得到递推GM(1,1)模型和残差递推GM(1,1)模型,将前者模型的解与后者取对数后的模型的解反相相加后,得到自适应GM(1,1)模型的解。以实例数据对上述4种方法进行仿真和比较,结果表明,自适应GM(1,1)模型较其他方法有更好的预测效果,从根本上解决了GM(1,1)模型对波形序列的预测问题。 相似文献
15.
基于级比优化的广义GM(1,1)预测模型 总被引:1,自引:1,他引:1
从GM(1,1)模型差分方程的角度推导出差分GM(1,1)模型及其还原时间响应函数,并与经典GM(1,1)模型(微分GM(1,1)模型)及其还原时间响应函数进行类比分析,得出两者具有同构性,其唯一差别为级比的结论.再由两者的同构性提出了一个广义GM(1,1)预测模型,新模型具有一般性,能有效概括差分方程与微分方程模型,极大提取了原始序列的灰信息;另一方面,与差分GM(1,1)模型及微分GM(1,1)模型的级比固定性不同,广义GM(1,1)模型的级比具有可优化性,通过非线性最小二乘优化方法可得出最优级比,进而从级比的角度优化了GM(1,1)模型,拓展了灰色系统理论.最后通过一个实例充分反映了新模型的上述优点. 相似文献
16.
估计GM(1,1)模型中参数的线性规划方法 总被引:1,自引:0,他引:1
估计GM(1,1)模型中的参数通常采用最小二乘准则,而在模型精度检验时又常采用平均相对误差。在平均相对误差达到最小准则或最大相对误差达到最小准则时,分别给出了估计GM(1,1)模型中参数的线性规划方法,并通过实例给出了不同极小化准则下数值结果的对比。数值结果表明,采用平均相对误差达到最小准则和最大相对误差达到最小准则比通常采用的最小二乘准则更合理,效果更好。 相似文献
17.
提高预测方法的预测效果具有重要意义,但是仅靠建立单一的预测模型来提高预测精度是非常困难的.本文对当前预测方法存在的不足进行了阐述,在此基础上提出将误差校正方法引入预测以提高预测精度的新思路.首先,采用预测方法(文中以T-S模糊神经网络方法为例)对训练样本进行拟合,再对预测对象进行初始预测;其次,引入加速平移变换和加权均值变换对误差序列进行处理,再以处理后的数据为样本构建基于数据变换的GM(1,1)误差预测模型,并对该序列后续点进行预测;最后,利用误差预测结果对初始预测值进行校正.文章最后以上证综合指数的收盘价的预测为例,算例分析表明,与校正前的预测精度相比,校正后的预测精度有显著提高,进而验证了该模型的有效可行. 相似文献
18.
GM(1,1)模型的一类性质研究 总被引:1,自引:0,他引:1
从线性回归一阶自回归式出发 ,在研究一阶自回归模型和灰色系统GM(1,1)模型的关系基础上 ,针对GM(1,1)模型在实际应用中出现的问题 ,研究了GM(1,1)模型的参数估计特征以及误差形式 ,指出了该模型参数估计的改进方向 ,并给出了该模型应用条件及范围 ,为准确运用提供了可靠保证。 相似文献