首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Retallack GJ 《Nature》2001,411(6835):287-290
To understand better the link between atmospheric CO2 concentrations and climate over geological time, records of past CO2 are reconstructed from geochemical proxies. Although these records have provided us with a broad picture of CO2 variation throughout the Phanerozoic eon (the past 544 Myr), inconsistencies and gaps remain that still need to be resolved. Here I present a continuous 300-Myr record of stomatal abundance from fossil leaves of four genera of plants that are closely related to the present-day Ginkgo tree. Using the known relationship between leaf stomatal abundance and growing season CO2 concentrations, I reconstruct past atmospheric CO2 concentrations. For the past 300 Myr, only two intervals of low CO2 (<1,000 p.p.m.v.) are inferred, both of which coincide with known ice ages in Neogene (1-8 Myr) and early Permian (275-290 Myr) times. But for most of the Mesozoic era (65-250 Myr), CO2 levels were high (1,000-2,000 p.p.m.v.), with transient excursions to even higher CO2 (>2,000 p.p.m.v.) concentrations. These results are consistent with some reconstructions of past CO2 (refs 1, 2) and palaeotemperature records, but suggest that CO2 reconstructions based on carbon isotope proxies may be compromised by episodic outbursts of isotopically light methane. These results support the role of water vapour, methane and CO2 in greenhouse climate warming over the past 300 Myr.  相似文献   

2.
大洋缺氧事件的碳稳定同位素响应   总被引:3,自引:0,他引:3  
从碳稳定同位素组成及其分馏机理出发 ,系统探讨了大洋缺氧事件与海相碳酸盐和有机碳稳定同位素分馏之间的关系。缺氧事件期间 ,由于生物大批死亡和快速埋藏 ,其分解消耗海水中大量的溶解氧 ,引起大洋水体缺氧 ,富含 1 2 C的有机质从而得以大量保存 ;相应地大气和海水中富 1 3 C,同期海相碳酸盐岩碳同位素 δ值 (δ1 3C)正偏。在世界各地缺氧事件层内 ,无一例外地碳酸盐岩碳稳定同位素出现了不同程度的正偏 ,Cenomanian- Turonian 界线偏幅达~2‰。海相碳酸盐与有机质碳稳定同位素变化不仅可以提供地质历史中有机碳埋藏量的记录。研究全球碳循环变化 ,还可能追溯有机碳风化和埋藏速率的变化 ,定性地恢复大气 p CO2 变化。  相似文献   

3.
Changes in past atmospheric carbon dioxide concentrations can be determined by measuring the composition of air trapped in ice cores from Antarctica. So far, the Antarctic Vostok and EPICA Dome C ice cores have provided a composite record of atmospheric carbon dioxide levels over the past 650,000 years. Here we present results of the lowest 200 m of the Dome C ice core, extending the record of atmospheric carbon dioxide concentration by two complete glacial cycles to 800,000 yr before present. From previously published data and the present work, we find that atmospheric carbon dioxide is strongly correlated with Antarctic temperature throughout eight glacial cycles but with significantly lower concentrations between 650,000 and 750,000 yr before present. Carbon dioxide levels are below 180 parts per million by volume (p.p.m.v.) for a period of 3,000 yr during Marine Isotope Stage 16, possibly reflecting more pronounced oceanic carbon storage. We report the lowest carbon dioxide concentration measured in an ice core, which extends the pre-industrial range of carbon dioxide concentrations during the late Quaternary by about 10 p.p.m.v. to 172-300 p.p.m.v.  相似文献   

4.
Dual modes of the carbon cycle since the Last Glacial Maximum   总被引:9,自引:0,他引:9  
Smith HJ  Fischer H  Wahlen M  Mastroianni D  Deck B 《Nature》1999,400(6741):248-250
The most conspicuous feature of the record of past climate contained in polar ice is the rapid warming which occurs after long intervals of gradual cooling. During the last four transitions from glacial to interglacial conditions, over which such abrupt warmings occur, ice records indicate that the CO2 concentration of the atmosphere increased by roughly 80 to 100 parts per million by volume. But the causes of the atmospheric CO2 concentration increases are unclear. Here we present the stable-carbon-isotope composition (delta 13 CO2) of CO2 extracted from air trapped in ice at Taylor Dome, Antarctica, from the Last Glacial Maximum to the onset of Holocene times. The global carbon cycle is shown to have operated in two distinct primary modes on the timescale of thousands of years, one when climate was changing relatively slowly and another when warming was rapid, each with a characteristic average stable-carbon-isotope composition of the net CO2 exchanged by the atmosphere with the land and oceans. delta 13 CO2 increased between 16.5 and 9 thousand years ago by slightly more than would be estimated to be caused by the physical effects of a 5 degrees C rise in global average sea surface temperature driving a CO2 efflux from the ocean, but our data do not allow specific causes to be constrained.  相似文献   

5.
Genty D  Blamart D  Ouahdi R  Gilmour M  Baker A  Jouzel J  Van-Exter S 《Nature》2003,421(6925):833-837
The signature of Dansgaard-Oeschger events--millennial-scale abrupt climate oscillations during the last glacial period--is well established in ice cores and marine records. But the effects of such events in continental settings are not as clear, and their absolute chronology is uncertain beyond the limit of (14)C dating and annual layer counting for marine records and ice cores, respectively. Here we present carbon and oxygen isotope records from a stalagmite collected in southwest France which have been precisely dated using 234U/230Th ratios. We find rapid climate oscillations coincident with the established Dansgaard-Oeschger events between 83,000 and 32,000 years ago in both isotope records. The oxygen isotope signature is similar to a record from Soreq cave, Israel, and deep-sea records, indicating the large spatial scale of the climate oscillations. The signal in the carbon isotopes gives evidence of drastic and rapid vegetation changes in western Europe, an important site in human cultural evolution. We also find evidence for a long phase of extremely cold climate in southwest France between 61.2 +/- 0.6 and 67.4 +/- 0.9 kyr ago.  相似文献   

6.
Based on the study of oxygen isotope and microparticle in the Guliya ice core,atmospheric dust and environmental changes in the northwest Tibetan Plateau since the last interglacial were revealed.The microparticle record indicates that low dust load on the Plateau in the interglacial.Particle concentration increased rapidly when the climate turned into the last glacial and reached the maximum during the MIS 4.In the Last Glacial Maximum, however,the enhancement of microparticle concentration was slight,differing to those in the Antarctic and Greenland.On the orbital timescale,both the temperature on the Tibetan Plateau and summer solar insolation in the Northern Hemisphere had their impact on the microparticle record,but the difference in phase and amplitude also existed. Though having the same dust source, microparticle records in the ice cores on the Tibetan Plateau and the Greenland seem to have different significance.  相似文献   

7.
Oceanic Cd/P ratio and nutrient utilization in the glacial Southern Ocean   总被引:1,自引:0,他引:1  
Elderfield H  Rickaby RE 《Nature》2000,405(6784):305-310
During glacial periods, low atmospheric carbon dioxide concentration has been associated with increased oceanic carbon uptake, particularly in the southern oceans. The mechanism involved remains unclear. Because ocean productivity is strongly influenced by nutrient levels, palaeo-oceanographic proxies have been applied to investigate nutrient utilization in surface water across glacial transitions. Here we show that present-day cadmium and phosphorus concentrations in the global oceans can be explained by a chemical fractionation during particle formation, whereby uptake of cadmium occurs in preference to uptake of phosphorus. This allows the reconstruction of past surface water phosphate concentrations from the cadmium/calcium ratio of planktonic foraminifera. Results from the Last Glacial Maximum show similar phosphate utilization in the subantarctic to that of today, but much smaller utilization in the polar Southern Ocean, in a model that is consistent with the expansion of glacial sea ice and which can reconcile all proxy records of polar nutrient utilization. By restricting communication between the ocean and atmosphere, sea ice expansion also provides a mechanism for reduced CO2 release by the Southern Ocean and lower glacial atmospheric CO2.  相似文献   

8.
The snowball Earth hypothesis postulates that the planet was entirely covered by ice for millions of years in the Neoproterozoic era, in a self-enhanced glaciation caused by the high albedo of the ice-covered planet. In a hard-snowball picture, the subsequent rapid unfreezing resulted from an ultra-greenhouse event attributed to the buildup of volcanic carbon dioxide (CO(2)) during glaciation. High partial pressures of atmospheric CO(2) (pCO2; from 20,000 to 90,000?p.p.m.v.) in the aftermath of the Marinoan glaciation (~635?Myr ago) have been inferred from both boron and triple oxygen isotopes. These pCO2 values are 50 to 225 times higher than present-day levels. Here, we re-evaluate these estimates using paired carbon isotopic data for carbonate layers that cap Neoproterozoic glacial deposits and are considered to record post-glacial sea level rise. The new data reported here for Brazilian cap carbonates, together with previous ones for time-equivalent units, provide estimates lower than 3,200?p.p.m.v.--and possibly as low as the current value of ~400?p.p.m.v. Our new constraint, and our re-interpretation of the boron and triple oxygen isotope data, provide a completely different picture of the late Neoproterozoic environment, with low atmospheric concentrations of carbon dioxide and oxygen that are inconsistent with a hard-snowball Earth.  相似文献   

9.
Maher BA  Dennis PF 《Nature》2001,411(6834):176-180
The low concentration of atmospheric CO2 inferred to have been present during glacial periods is thought to have been partly caused by an increased supply of iron-bearing dust to the ocean surface. This is supported by a recent model that attributes half of the CO2 reduction during past glacial stages to iron-stimulated uptake of CO2 by phytoplankton in the Southern Ocean. But atmospheric dust fluxes to the Southern Ocean, even in glacial periods, are thought to be relatively low and therefore it has been proposed that Southern Ocean productivity might be influenced by iron deposited elsewhere-for example, in the Northern Hemisphere-which is then transported south via ocean circulation (similar to the distal supply of iron to the equatorial Pacific Ocean). Here we examine the timing of dust fluxes to the North Atlantic Ocean, in relation to climate records from the Vostok ice core in Antarctica around the time of the penultimate deglaciation (about 130 kyr ago). Two main dust peaks occurred 155 kyr and 130 kyr ago, but neither was associated with the CO2 rise recorded in the Vostok ice core. This mismatch, together with the low dust flux supplied to the Southern Ocean, suggests that dust-mediated iron fertilization of the Southern Ocean did not significantly influence atmospheric CO2 at the termination of the penultimate glaciation.  相似文献   

10.
The covariation of carbon dioxide (CO(2)) concentration and temperature in Antarctic ice-core records suggests a close link between CO(2) and climate during the Pleistocene ice ages. The role and relative importance of CO(2) in producing these climate changes remains unclear, however, in part because the ice-core deuterium record reflects local rather than global temperature. Here we construct a record of global surface temperature from 80 proxy records and show that temperature is correlated with and generally lags CO(2) during the last (that is, the most recent) deglaciation. Differences between the respective temperature changes of the Northern Hemisphere and Southern Hemisphere parallel variations in the strength of the Atlantic meridional overturning circulation recorded in marine sediments. These observations, together with transient global climate model simulations, support the conclusion that an antiphased hemispheric temperature response to ocean circulation changes superimposed on globally in-phase warming driven by increasing CO(2) concentrations is an explanation for much of the temperature change at the end of the most recent ice age.  相似文献   

11.
Watson AJ  Bakker DC  Ridgwell AJ  Boyd PW  Law CS 《Nature》2000,407(6805):730-733
Photosynthesis by marine phytoplankton in the Southern Ocean, and the associated uptake of carbon, is thought to be currently limited by the availability of iron. One implication of this limitation is that a larger iron supply to the region in glacial times could have stimulated algal photosynthesis, leading to lower concentrations of atmospheric CO2. Similarly, it has been proposed that artificial iron fertilization of the oceans might increase future carbon sequestration. Here we report data from a whole-ecosystem test of the iron-limitation hypothesis in the Southern Ocean, which show that surface uptake of atmospheric CO2 and uptake ratios of silica to carbon by phytoplankton were strongly influenced by nanomolar increases of iron concentration. We use these results to inform a model of global carbon and ocean nutrients, forced with atmospheric iron fluxes to the region derived from the Vostok ice-core dust record. During glacial periods, predicted magnitudes and timings of atmospheric CO2 changes match ice-core records well. At glacial terminations, the model suggests that forcing of Southern Ocean biota by iron caused the initial approximately 40 p.p.m. of glacial-interglacial CO2 change, but other mechanisms must have accounted for the remaining 40 p.p.m. increase. The experiment also confirms that modest sequestration of atmospheric CO2 by artificial additions of iron to the Southern Ocean is in principle possible, although the period and geographical extent over which sequestration would be effective remain poorly known.  相似文献   

12.
Atmospheric methane is an important greenhouse gas and a sensitive indicator of climate change and millennial-scale temperature variability. Its concentrations over the past 650,000 years have varied between approximately 350 and approximately 800 parts per 10(9) by volume (p.p.b.v.) during glacial and interglacial periods, respectively. In comparison, present-day methane levels of approximately 1,770 p.p.b.v. have been reported. Insights into the external forcing factors and internal feedbacks controlling atmospheric methane are essential for predicting the methane budget in a warmer world. Here we present a detailed atmospheric methane record from the EPICA Dome C ice core that extends the history of this greenhouse gas to 800,000 yr before present. The average time resolution of the new data is approximately 380 yr and permits the identification of orbital and millennial-scale features. Spectral analyses indicate that the long-term variability in atmospheric methane levels is dominated by approximately 100,000 yr glacial-interglacial cycles up to approximately 400,000 yr ago with an increasing contribution of the precessional component during the four more recent climatic cycles. We suggest that changes in the strength of tropical methane sources and sinks (wetlands, atmospheric oxidation), possibly influenced by changes in monsoon systems and the position of the intertropical convergence zone, controlled the atmospheric methane budget, with an additional source input during major terminations as the retreat of the northern ice sheet allowed higher methane emissions from extending periglacial wetlands. Millennial-scale changes in methane levels identified in our record as being associated with Antarctic isotope maxima events are indicative of ubiquitous millennial-scale temperature variability during the past eight glacial cycles.  相似文献   

13.
Dust has the potential to modify global climate by influencing the radiative balance of the atmosphere and by supplying iron and other essential limiting micronutrients to the ocean. Indeed, dust supply to the Southern Ocean increases during ice ages, and 'iron fertilization' of the subantarctic zone may have contributed up to 40?parts per million by volume (p.p.m.v.) of the decrease (80-100 p.p.m.v.) in atmospheric carbon dioxide observed during late Pleistocene glacial cycles. So far, however, the magnitude of Southern Ocean dust deposition in earlier times and its role in the development and evolution of Pleistocene glacial cycles have remained unclear. Here we report a high-resolution record of dust and iron supply to the Southern Ocean over the past four million years, derived from the analysis of marine sediments from ODP Site 1090, located in the Atlantic sector of the subantarctic zone. The close correspondence of our dust and iron deposition records with Antarctic ice core reconstructions of dust flux covering the past 800,000 years (refs 8, 9) indicates that both of these archives record large-scale deposition changes that should apply to most of the Southern Ocean, validating previous interpretations of the ice core data. The extension of the record beyond the interval covered by the Antarctic ice cores reveals that, in contrast to the relatively gradual intensification of glacial cycles over the past three million years, Southern Ocean dust and iron flux rose sharply at the Mid-Pleistocene climatic transition around 1.25 million years ago. This finding complements previous observations over late Pleistocene glacial cycles, providing new evidence of a tight connection between high dust input to the Southern Ocean and the emergence of the deep glaciations that characterize the past one million years of Earth history.  相似文献   

14.
EPICA Community Members 《Nature》2006,444(7116):195-198
Precise knowledge of the phase relationship between climate changes in the two hemispheres is a key for understanding the Earth's climate dynamics. For the last glacial period, ice core studies have revealed strong coupling of the largest millennial-scale warm events in Antarctica with the longest Dansgaard-Oeschger events in Greenland through the Atlantic meridional overturning circulation. It has been unclear, however, whether the shorter Dansgaard-Oeschger events have counterparts in the shorter and less prominent Antarctic temperature variations, and whether these events are linked by the same mechanism. Here we present a glacial climate record derived from an ice core from Dronning Maud Land, Antarctica, which represents South Atlantic climate at a resolution comparable with the Greenland ice core records. After methane synchronization with an ice core from North Greenland, the oxygen isotope record from the Dronning Maud Land ice core shows a one-to-one coupling between all Antarctic warm events and Greenland Dansgaard-Oeschger events by the bipolar seesaw6. The amplitude of the Antarctic warm events is found to be linearly dependent on the duration of the concurrent stadial in the North, suggesting that they all result from a similar reduction in the meridional overturning circulation.  相似文献   

15.
用树轮碳同位素年序列重建大气二氧化碳浓度   总被引:6,自引:2,他引:4  
大气圈CO2浓度及其同位素组成是不断变化的。植物在同化大气CO2过程中产生碳同位素分馏,因此,树轮中稳定碳同位素比值(^13C/^12C)不仅是重建古气候的工具,也是过去大气CO2浓度变化的敏感指标器。利用采自浙江西天目山的两株柳杉树轮稳定碳同位素(δ^13C)组成年序列,对19世纪中叶以来大气CO2浓度变化进行重建,其重建值与大气CO2浓度的实测值较吻合。  相似文献   

16.
《科学通报(英文版)》1999,44(15):1424-1424
The ice core dust particulate sampled from Mt. Xixabangma has been analyzed by means of X-ray photoelectron spectrometer (XPS) and scanning electron microscope with energy dispersion X-ray analysis (SEM/EDAX). The results show that the contents of SO42- and SOl32- in the surface layer of the dust are significantly higher than those in the subsurface layer (with the exception of organic sulfide). This difference indicates that the surface SOX has been captured and then chemically converted by the atmospheric dust particulate before its deposition with snow, which is obviously different from those inner layer sulfates and sulfites contained by dust itself. In addition, it has been determined by SEM/EDAX that the dust contains relatively high concentrations of transition metal elements such as Fe and Ti oxides which could function as photocatalysts to the conversion of SOX adhered on the surface of the dust, and consequently accelerate the deposition of SOx to snow. Our research also demonstrates that the ad-sorptive carrying and the catalytic performance of the dust to the atmospheric SOX are most important causes of the positive correlation between SO42- and dust concentration records in ice cores.  相似文献   

17.
Ice cores recovered from polar ice sheet received and preserved sulfuric acid fallout from explosive volcanic eruptions. DT263 ice core was retrieved from an east Antarctic location. The ice core is dated using a combination of annual layer counting and volcanic time stratigraphic horizon as 780 years (1215-1996 A.D.). The ice core record demonstrates that during the period of approximately 1460-1800 A.D., the accumulation is sharply lower than the levels prior to and after this period. This period coincides with the most recent neoglacial climatic episode, the "Little Ice Age (LIA)", that has been found in numerous Northern Hemisphere proxy and historic records. The non-sea-salt SO42- concentrations indicate seventeen volcanic events in DT263 ice core. Compared with those from previous Antarctic ice cores, significant discrepancies are found between these records in relative volcanic flux of several well-known events. The discrepancies among these records may be explained by the differences in surface topography, accumulation rate, snow drift and distribution which highlight the potential impact of local glaci-ology on ice core volcanic records, analytical techniques used for sulfate measurement, etc. Volcanic eruptions in middle and high southern latitudes affect volcanic records in Antarctic snow more intensively than those in the low latitudes.  相似文献   

18.
Johnston DT  Macdonald FA  Gill BC  Hoffman PF  Schrag DP 《Nature》2012,483(7389):320-323
Interpretations of major climatic and biological events in Earth history are, in large part, derived from the stable carbon isotope records of carbonate rocks and sedimentary organic matter. Neoproterozoic carbonate records contain unusual and large negative isotopic anomalies within long periods (10-100 million years) characterized by δ(13)C in carbonate (δ(13)C(carb)) enriched to more than +5 per mil. Classically, δ(13)C(carb) is interpreted as a metric of the relative fraction of carbon buried as organic matter in marine sediments, which can be linked to oxygen accumulation through the stoichiometry of primary production. If a change in the isotopic composition of marine dissolved inorganic carbon is responsible for these excursions, it is expected that records of δ(13)C(carb) and δ(13)C in organic carbon (δ(13)C(org)) will covary, offset by the fractionation imparted by primary production. The documentation of several Neoproterozoic δ(13)C(carb) excursions that are decoupled from δ(13)C(org), however, indicates that other mechanisms may account for these excursions. Here we present δ(13)C data from Mongolia, northwest Canada and Namibia that capture multiple large-amplitude (over 10 per mil) negative carbon isotope anomalies, and use these data in a new quantitative mixing model to examine the behaviour of the Neoproterozoic carbon cycle. We find that carbonate and organic carbon isotope data from Mongolia and Canada are tightly coupled through multiple δ(13)C(carb) excursions, quantitatively ruling out previously suggested alternative explanations, such as diagenesis or the presence and terminal oxidation of a large marine dissolved organic carbon reservoir. Our data from Namibia, which do not record isotopic covariance, can be explained by simple mixing with a detrital flux of organic matter. We thus interpret δ(13)C(carb) anomalies as recording a primary perturbation to the surface carbon cycle. This interpretation requires the revisiting of models linking drastic isotope excursions to deep ocean oxygenation and the opening of environments capable of supporting animals.  相似文献   

19.
The oceans have absorbed nearly half of the fossil-fuel carbon dioxide (CO2) emitted into the atmosphere since pre-industrial times, causing a measurable reduction in seawater pH and carbonate saturation. If CO2 emissions continue to rise at current rates, upper-ocean pH will decrease to levels lower than have existed for tens of millions of years and, critically, at a rate of change 100 times greater than at any time over this period. Recent studies have shown effects of ocean acidification on a variety of marine life forms, in particular calcifying organisms. Consequences at the community to ecosystem level, in contrast, are largely unknown. Here we show that dissolved inorganic carbon consumption of a natural plankton community maintained in mesocosm enclosures at initial CO2 partial pressures of 350, 700 and 1,050 microatm increases with rising CO2. The community consumed up to 39% more dissolved inorganic carbon at increased CO2 partial pressures compared to present levels, whereas nutrient uptake remained the same. The stoichiometry of carbon to nitrogen drawdown increased from 6.0 at low CO2 to 8.0 at high CO2, thus exceeding the Redfield carbon:nitrogen ratio of 6.6 in today's ocean. This excess carbon consumption was associated with higher loss of organic carbon from the upper layer of the stratified mesocosms. If applicable to the natural environment, the observed responses have implications for a variety of marine biological and biogeochemical processes, and underscore the importance of biologically driven feedbacks in the ocean to global change.  相似文献   

20.
Schlesinger WH  Lichter J 《Nature》2001,411(6836):466-469
The current rise in atmospheric CO2 concentration is thought to be mitigated in part by carbon sequestration within forest ecosystems, where carbon can be stored in vegetation or soils. The storage of carbon in soils is determined by the fraction that is sequestered in persistent organic materials, such as humus. In experimental forest plots of loblolly pine (Pinus taeda) exposed to high CO2 concentrations, nearly half of the carbon uptake is allocated to short-lived tissues, largely foliage. These tissues fall to the ground and decompose, normally contributing only a small portion of their carbon content to refractory soil humic materials. Such findings call into question the role of soils as long-term carbon sinks, and show the need for a better understanding of carbon cycling in forest soils. Here we report a significant accumulation of carbon in the litter layer of experimental forest plots after three years of growth at increased CO2 concentrations (565 microl l(-1)). But fast turnover times of organic carbon in the litter layer (of about three years) appear to constrain the potential size of this carbon sink. Given the observation that carbon accumulation in the deeper mineral soil layers was absent, we suggest that significant, long-term net carbon sequestration in forest soils is unlikely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号