首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
提出了MKdV方程的一个多辛Hamilton形式,并利用中点辛离散得到一个等价于多辛Preissman积分的新格式,最后用数值例子说明:多辛格式具有良好的长时间数值行为.  相似文献   

2.
考虑了对称正则长波方程(SRLW方程)的多辛算法.通过对SRLW方程作正则变换,得到了它的正则方程组及其几个守恒律.用多辛Euler方法离散此方程组得到了它的多辛格式,并且推导了它的局部能量守恒律的离散误差.消去多辛Euler格式的中间变量,得到了多辛Preissman格式.数值实验验证了所构造的格式的有效性扣长时间的数值稳定性,它能很好地模拟原孤立波,能量精度也较高.  相似文献   

3.
把非线性的Dirac方程分裂成线性和非线性2个子问题,这2个子问题具有辛或者多辛结构,可以用辛格式对它们进行离散计算,得到的格式具有整体辛性.此格式较传统的多辛格式具有效率高、计算快等优点.  相似文献   

4.
把非线性 Dirac 方程分裂成线性和非线性子问题,这些子问题都具有辛或者多辛结构,可以构造它们的辛格式。对于非线性问题,利用点点守恒律可以精确求解。至于线性问题,在空间方向用高阶紧致格式离散,在时间方向用辛欧拉法进一步离散,此格式半显式的。与传统的多辛格式相比,这种格式有计算效率高、计算时间少等优点。  相似文献   

5.
基于Bridges和Reich原理,得到了梁的振动问题的多辛哈密顿形式及局部能量和动量守恒律.利用Fourier拟谱格式对空间方向离散.中点辛格式对时间方向离散,得到相应的离散多辛守恒律,证明了离散局部能量守恒.最后,给出了数值例子.  相似文献   

6.
对非线性Pochhammer-Chree方程作正则变换,得到它的一个多辛方程组,并用多辛Fourier拟谱方法离散此方程组,得到了非线性Pochhammer-Chree方程的多辛Fourier拟谱格式,同时得到格式的离散多辛守恒律.数值实验验证了所构造格式的有效性.  相似文献   

7.
对非线性"Good" Boussinesq方程的一个多辛方程组进行数值离散,导出方程的离散多辛守恒律,得到一个与此数值离散方法等价的,新的7点显式多辛格式.通过孤立波的数值模拟试验表明,所构造格式既能很好地模拟单孤立波运动的波形,又能很好地模拟双孤立波的碰撞过程,可有效地模拟原孤立波的时间演化,具有长时间的数值稳定性.  相似文献   

8.
利用Fourier拟谱方法,分别对梁振动方程的辛格式进行空间和时间方向上的离散,得到相应的多辛守恒律.文中证明了离散局部能量守恒,并用实例说明理论分析是正确的.  相似文献   

9.
广义Pochhammer-Chree方程的多辛Fourier拟谱格式及孤立波试验   总被引:1,自引:1,他引:0  
通过变换,将广义Pochhammer-Chree(PC)方程转化为多辛形式的方程组.在空间方向利用Fourier拟谱方法,在时间方向利用Euler中点格式进行离散此方程组,得到广义PC方程的多辛Fourier拟谱格式及其离散多辛守恒律.孤立波的数值模拟试验验证所构造格式的有效性,以及广义PC方程的孤立波相互作用是非弹性的事实.  相似文献   

10.
考虑非线性IMBq方程的多辛Hamilton形式,通过消去中间变量,得到新的等价于多辛Preissman积分的格式.发现它具有多辛守恒律、局部能量守恒律及局部动量守恒律,最后以数值例子验证其有效性.  相似文献   

11.
考虑用多辛Fourier拟谱方法来处理一类非线性Schrödinger方程的周期边值问题.分析半离散多辛Fourier拟谱格式的稳定性,得到了最优收敛阶.给出全离散多辛Fourier拟谱格式的最优收敛阶.数值算例表明了算法的有效性.  相似文献   

12.
考虑用多辛Fourier拟谱方法来处理一类非线性Schr(o)dinger方程的周期边值问题.分析半离散多辛Fourier拟谱格式的稳定性,得到了最优收敛阶.给出全离散多辛Fourier拟谱格式的最优收敛阶.数值算例表明了算法的有效性.  相似文献   

13.
基于其多辛方程组的形式,对满足周期边界条件的KdV方程,在空间方向用Fourier拟谱方法、时间方向用中点隐式辛格式进行离散,得到了KdV方程的多辛Fourier拟谱格式及其相应的守恒律.对不同的孤立波解进行数值模拟,结果验证了所构造格式的有效性与长期数值稳定性.  相似文献   

14.
对非线性Pochhammer-Chree方程的一个多辛方程组进行数值离散,导出了方程的离散多辛守恒律,并得到一个与此数值离散方法等价的新的9点多辛盒格式.孤立波的数值模拟试验验证了所构造格式的长时间数值稳定性以及非线性Pochhammer-Chree方程的孤立波相互作用是非弹性的事实.  相似文献   

15.
考虑对称正则长波(SRLW)方程的多辛算法.辛算法是从辛几何观点出发.利用变分原理构造的具有保持原Hamilton系统辛几何结构性质的一种算法.本文利用正则变换.构造正则长波方程的多辛方程组,利用多辛算法离散此多辛方程组,得到一个多辛中点格式,要求所得到的多辛格式满足离散形式的多辛守恒律.并分析了它的线性部分的稳定性.用数值实验验征了所构造的格式具有长时间的数值稳定性,它们还能很好地模拟原孤立波的波形。  相似文献   

16.
在空间方向用Fourier拟谱方法离散非线性“good”Boussinesq方程,然后在时间方向用中点辛格式对半离散方程进行数值求解,得到了非线性“good”Boussinesq方程的多辛Fourier拟谱格式.数值实验能很好地模拟原孤立波的运动,验证了所构造格式的有效性与长时间的数值稳定性.  相似文献   

17.
梁振动方程的多辛算法   总被引:3,自引:0,他引:3  
本文提出了梁振动方程的一个多辛Hamilton形式,并利用中点辛离散得到一个等价于多辛Priessman积分的新格式,进而证明了它是无条件稳定且收敛,最后用数值例子表明了理论分析的正确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号