首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 328 毫秒
1.
Cytoplasmic male sterility (CMS) is a maternally inherited characteristic found in many (〉150) plant species. CMS/restoration systems are useful tools for hybrid seed production, and are ideal models for study of the interactions between nuclear and mitochondrial genomes. CMS/restoration systems in rice have been widely used for hybrid seed production, greatly contributing to the food supply. This article reviews the progress of the studies on the genetic and molecular basis of cytoplasmic male sterility and fertility restoration in rice.  相似文献   

2.
Characterization and mapping of a white panicle mutant gene in rice   总被引:1,自引:0,他引:1  
A spontaneous white panicle mutant was found from the F6 progenies of an indicajaponica cross.The mutant exhibits white stripes on its basal leaves while the panicles,rachis and pedicel are milky white colored at flowering stage.Genetic analysis in an F2 population from the cross of Zhi7/white panicle mutant indicates that the white panicle phenotype is controlled by a single recessive nuclear gene,tentatively termed as wp(t).Using microsatellite markers,the wp(t) gene was anchored between the markers of SSR101 and SSR63.9 with a map distance of 2.3 and 0.8cM,respectively,and co-segregated with the marker of SSR17 on rice chromosome 1.  相似文献   

3.
Pollen sterility is commonly found in the intra-specific hybrids of indica and japonica rice, which is one of the main constrains for the utilization of heterosis between indica and japonica. Six loci controlling the pollen sterility of F1 between indica and japonica have been identified from previous studies. Neutral alleles at each locus are potential to overcome the F1 pollen sterility associated with the locus. Therefore, exploitation and utilization of neutral alleles are of significant importance. The present research was based on fine mapping of the F1 pollen-sterility gene Sb and the abundant genetic diversity of Oryza rufipogon Griff. indigenous to Gaozhou, Guangdong Province (referred to as Gaozhou wild rice). Crosses were made using Taichung65 (with the genotype of Sb^jSb^j and referred to as El) and its near-isogenic line of F1 pollen sterility gene Sb(with the genotype of Sb^iSb^i, E2) as female parents, and 12 different accessions of Gaozhou wild rice as male parents. F1 pollen fertility was examined to identify the materials having the neutral alleles at the F1 pollen-sterility locus. Segregation of 4 molecular markers tightly linked with the Sb locus was analyzed in the F2 populations derived from the FlS carrying the neutral gene. The pollen fertility related to the 3 genotypes of the molecular markers was also checked by statistical test to determine whether it was consistent with the hypothesis. The results showed that the pollen fertility of two F1s from one accession of Gaozhou wild rice (GZW099) with E1 and E2 was (89.2±21.07)% and (85.65±1.05)%, respectively. Both of them were fertile and showed no significant difference by t-test. Segregation of the 3 genotypes of the 4 molecular markers followed the expected Mendelian ratio (1:2:1) in the F2 populations. There was no significant difference for the averaged pollen fertility of the plants related to the 3 genotypes, suggesting that no interaction exists between the alleles at the Sb locus in GZW099 and Taichung65 or E2. Evidentially, GZW099 carried the neutral gene (named Sb″Sb″) at the Sb locus, which provides valuable theoretical basis and resources for further studying and overcoming the sterility of indica-japonica hybrids.  相似文献   

4.
A rice male-sterile mutant OsMS-L of japonica cultivar 9522 background, was obtained in M4 population treated with ^60Co γ-Ray. Genetic analysis indicated that the male.sterile phenotype was controlled by a single recessive gene. Results of tissue section showed that at microspore stage, OsMS-L tapetum was retarded. Then tapetal calls expanded and microspores degenerated. No matured pollens were observed in OsMS-L anther locus. To map OsMS-L locus, an F2 population was constructed from the cross between the OsMS-L (japonica) and LongTeFu B(indica). Firstly, the OsMS-L locus was roughly mapped between two SSR markers, RM109 and RM7562 on chromosome 2. And then eleven polymorphic markers were developed for further fine fine-mapping. At last the OsMS-L locus was mapped between the two lnDel markers, Lhsl0 and Lhs6 with genetic distance of 0.4 cM, respectively. The region was delimited to 133 kb. All these results were useful for further cloning and functional analysis of OsMS-L.  相似文献   

5.
In order to screen molecular markers linked to fertility restoring genes and further improve the breeding efficiency of restorer lines, in this study, wheat varieties 18A, 18B and 99AR144-1 were used as experimental materials to establish F2 fertility-segregating population. Plant quantitative trait “major gene polygene mixed model” separation analysis method and SSR molecular markers were adopted for genetic analysis of four generations, including the parents P1, P2, and hybrids (Fl and F2 populations). The results show that AL-type fertility restoring gene is controlled by two pairs of additive-dominant-epistatic genes and additive-dominant polygene; two primers linked to fertility restoring genes were selected by SSR molecular markers, including Xgwm95 on chromosome 2A and Barc61 on chromosome 1B, with the linkage distance of 15.0 cM and 18.0 cM, respectively. Based on verification, these two markers are reliable for distinguishing AL-type wheat sterile lines and restorer lines.  相似文献   

6.
A rice initiation-type lesion mimic mutant (lmi) was identified, which was isolated from an indica rice Zhongxian 3037 through γ radiation mutagenesis. Trypan blue staining and sterile culture revealed that the mutant spontaneously developed lesions on the leaves in a developmentally regulated and light-dependent manner. Genetic analysis indicated that the lesion mimic trait was controlled by a single resessive locus. Using public molecular markers and an F2 population derived from lmi and 93-11, we mapped the lmi locus to the short arm of chromosome 8, nearby the centromere, between two SSR markers RM547 and RM331. The genetic distance was 1.2 and 3.2 cM, respectively. Then according to the public rice genomic sequence between the two SSR markers, lmi was further finely tagged by three CAPS markers: C4135-8, C4135-9 and C4135-10. And lmi locus was a co-segregated with marker C4135-10, providing a starting point for lmi gene cloning.  相似文献   

7.
The pubescence of the leaf blade surface is an important agronomic characteristic for rice morphology and significantly influences rice growth as well as physiological characteristics. This characteristic was analyzed in F1 and F2 plants derived by crossing cultivar 75-1-127 with the indica cultivar Minghui 63, as well as the glabrous cultivar Lemont and indica cultivar 9311. Results indicated that the pubescence of the leaf blade surface was a dominant trait and controlled by a single gene. The GL6 gene was primarily mapped on rice chromosome 6 with recessive F2 population derived from 75-1-127/Minghui 63 by combining bulked segregation analysis and recessive class analysis using the Mapmaker3.0/MapDraw software. The genetic distances between the simple sequence repeat markers RM20491 and RM20547 were 7.2 and 2.2 cM, respectively. The GL6 gene was fine mapped in the interval between InDel-106 and InDel-115 at genetic distances of 0.3 and 0.1 cM, respectively. The large, recessive F2 population was derived from 75-1-127/Minghui 63. A high-resolution genetic and physical map of GL6 was constructed. Derived from the map-based sequences published by the International Rice Genome Sequencing Project, the GL6 gene was localized at an interval of 79 (japonica) and 116.82 kb (9311) bracketed by InDel-106 and InDel-115 within the BAC accession numbers AP008403 and AP005760. Seven annotated genes (japonica) and eight annotated genes (9311) were present. The basis was further set for GL6 cloning and function analysis.  相似文献   

8.
Aluminum (A1) toxicity is the major factor limiting crop productivity in acid soils. In this study, a recombinant inbreed line (RIL) population derived from a cross between an A1 sensitive lowland indica rice variety IR1552 and an A1 tolerant upland japonica rice variety Azucena, was used for mapping quantitative trait loci (QTLs) for A1 tolerance. Three QTLs for relative root length (RRL) were detected on chromosome 1,9, 12, respectively, and 1 QTL for root length under A1 stress is identical on chromosome 1 after one week and two weeks stress. Comparison of QTLs on chromosome 1 from different studies indicated an identical interval between C86 and RZ801 with gene(s) for A1 tolerance. This interval provides an important start point for isolating genes responsible for A1 tolerance and understanding the genetic nature of Al tolerance in rice. Four A1 induced ESTs located in this interval were screened by reverse Northern analysis and confirmed by Northern analysis. They would be candidate genes for the QTL.  相似文献   

9.
We have analyzed a lax mutant that exhibits altered panicle architecture in rice.The primary and secondary rachis-branches are normally initiated and each branch ends in a terminal spikelet,but all the lateral spikelets are absent and the terminal spikelet displays variegated structures in the mutant.An F2 population from the cross between the lax mutant and a japonica variety,W11,was constructed and analyzed.Using microsatellite and CAPS markers,the lax locus was mapped on the long arm of chromosome 1,co-segregated with a CAPS marker,LZ1,within an interval of 0.28 cM between a CAPS marker,HB2,and a microsatellite marker,MRG4389.RT-PCR analysis revealed that the expressions of the rice B-function MADS-box genes OsMADS2,OsMADS4,OsMADS16 and OsMADS3 were significantly reduced,whereas the expression of the rice A-function gene RAPIA was not altered.  相似文献   

10.
Hybrid sterility is a major hindrance to utilizing the heterosis in indica-japonica hybrids. To isolate a gene Sc conferring the hybrid sterility, the locus was mapped using molecular markers and an F2 population derived from a cross between near isogenic lines. A primary linkage analysis showed that Sc was linked closely with 4 markers on chromosome 3, on which the genetic distance between a marker RG227 and Sc was 0.07 cM. Chromosome walking with a rice TAC genomic library was carried out using RG227 as a starting probe, and a contig of ca. 320 kb covering the Sc locus was constructed. Two TAC clones, M45EI4 and M90J01 that might cover the Sc locus, were partially sequenced. By searching the rice sequence databases with sequences of the TACs and RG227 a japonica rice BAC sequence, OSJNBb0078P24 was identified. By comparing the TAC and BAC sequences, six new PCR-based markers were developed. With these markers the Sc locus was further mapped to a region of 46 kb. The results suggest that the BAC OSJNBb0078P24 and TAC M45EI4 contain the Sc gene. Six ORFs were predicted in the focused 46-kb region.  相似文献   

11.
Bulked segregant analysis (BSA) of a BC, population derived from Congguang 41A//Miyang 23/Congguang 41B was used to map the nuclear fertility restorer gene for Honglian (HL) cytoplasmic male sterility. One hundred and fifty-nine microsatellite primer pairs were screened for polymorphisms between the parents and between two bulks representing fertile and sterile plants. One microsatellite marker RM258 produced polymorphic products. The nuclear fertility restorer gene for HL cytoplasmic male sterility was mapped on chromosome 10, 7.8cM from RM258. The restorer gene may be clustered on chromosome.  相似文献   

12.
小野1A是由小粒野生稻(Oryza minuta Presl.)中天然不育株与Y58S/内香B杂种后代优秀单株经多代回交转育而成。由于该雄性不育细胞质来自小粒野生稻,称为XY型雄性不育细胞质。恢保关系鉴定结果表明,XY型细胞质雄性不育系与野败型(WA)、印尼水田谷型(ID)、K型和红莲型(HL)细胞质雄性不育系的恢保关系不同,WA型、ID型、K型和HL型的保持系和恢复系中部分可以作为XY型雄性不育细胞质的保持系,部分可以作为XY型雄性不育细胞质的恢复系。XY型雄性不育细胞质突破了WA型、ID型、K型和HL型等雄性不育细胞质的恢保关系,扩大了保持系育种范围,可以用品质优良的栽培品种培育出高标准优质米不育系。由此可见,XY型雄性不育细胞质的发掘,不仅丰富了杂交稻细胞质遗传多样性,而且为培育高标准优质米不育系、进而实质性提高杂交稻稻米品质开辟了一条崭新的育种途径。  相似文献   

13.
The sterility of Pingxiang male-sterile rice (Pms), possibly derided from a spontaneous mutation in Pingxiang fertile rice (Pmf), was previously reported to be controlled by a single dominant nuclear gene. It can be restored to fertility either by a dominant epistatic gene or by higher temperature treatment at the early stage of inflorescence development. In order to tag the genic male-sterile gene, Pms, Pmf and Ce 64, a cytoplasmic male-sterile restoring line without the epistatic gene for Pms, were used to construct mapping populations. Two segregation populations, “(Pms/Ce 64) F1s (sterile plant)//Pmf ” F1 and “Pms//(Pmf/Ce 64) F1” F1, were simultaneously developed. Subsequently, the genic male- sterile gene was mapped between a simple sequence length polymorphism marker, RM228, and a restriction fragment length polymorphism marker, G2155, with distances of 14.9 and 2.6 cM, respectively. The tagged dominant genic male-sterile gene is temporarily designated Ms-p.  相似文献   

14.
Chu DS  Liu H  Nix P  Wu TF  Ralston EJ  Yates JR  Meyer BJ 《Nature》2006,443(7107):101-105
Male infertility is a long-standing enigma of significant medical concern. The integrity of sperm chromatin is a clinical indicator of male fertility and in vitro fertilization potential: chromosome aneuploidy and DNA decondensation or damage are correlated with reproductive failure. Identifying conserved proteins important for sperm chromatin structure and packaging can reveal universal causes of infertility. Here we combine proteomics, cytology and functional analysis in Caenorhabditis elegans to identify spermatogenic chromatin-associated proteins that are important for fertility. Our strategy employed multiple steps: purification of chromatin from comparable meiotic cell types, namely those undergoing spermatogenesis or oogenesis; proteomic analysis by multidimensional protein identification technology (MudPIT) of factors that co-purify with chromatin; prioritization of sperm proteins based on abundance; and subtraction of common proteins to eliminate general chromatin and meiotic factors. Our approach reduced 1,099 proteins co-purified with spermatogenic chromatin, currently the most extensive catalogue, to 132 proteins for functional analysis. Reduction of gene function through RNA interference coupled with protein localization studies revealed conserved spermatogenesis-specific proteins vital for DNA compaction, chromosome segregation, and fertility. Unexpected roles in spermatogenesis were also detected for factors involved in other processes. Our strategy to find fertility factors conserved from C. elegans to mammals achieved its goal: of mouse gene knockouts corresponding to nematode proteins, 37% (7/19) cause male sterility. Our list therefore provides significant opportunity to identify causes of male infertility and targets for male contraceptives.  相似文献   

15.
利用3个来源于野生稻与栽培稻杂交后代的反向温敏不育系R6S、N13S、Tb7S为材料,开展了反向温敏不育系不育性遗传研究,结果表明反向温敏不育系N13S的育性是细胞核内1对隐性基因控制的;Tb7S的育性是受隐性核基因控制的,F2代的育性分离比为9∶7,不育性状表现为2对基因的独立遗传;R6S的F2代育性分离比为37∶27,受细胞核内的3个隐性基因位点分别位于不同染色体上而通过互补作用的独立遗传.为进一步分离、定位及克隆有关这些反向温敏不育基因及发展分子标记辅助选择选育反向温敏不育系奠定了良好的遗传学基础.  相似文献   

16.
植物细胞质雄性不育分子机理研究   总被引:5,自引:0,他引:5  
李鹏  牟秋焕  刘保申 《山东科学》2005,18(4):31-36,41
本文综述了植物细胞质雄性不育分子机理的研究进展。主要介绍了植物线粒体DNA、线粒体RNA和线粒体蛋白质与细胞质雄性不育的关系,同时对植物叶绿体及核质互作与细胞质雄性不育的关系进行了综述,并对今后的研究前景进行了展望。  相似文献   

17.
本文利用~(60)Co γ射线诱变光温敏感型核不育系广占63S(GZ63S),在后代中获得一个稳定遗传的黄绿化叶色突变体黄广占63S,突变体从苗期至成熟期均显示叶片黄化特征.遗传分析表明该性状受一对隐性核基因控制,命名为yglosh.利用BSA方法分析突变体黄广占63S与正常绿叶对照蜀恢881构建的F2群体,将该黄化基因定位于水稻2号染色体分子标记RM279和Pm6之间,物理距离约68kb.定位区间的cDNA测序分析发现,突变体中LOC_Os02g05890基因发生单碱基突变,形成终止子提前终止该基因的翻译.转基因互补实验确定LOC_Os02g05890为目标基因,可能参与叶绿体发育或者叶绿素生物合成途径.  相似文献   

18.
通过转基因途径获得植物雄性不育   总被引:3,自引:0,他引:3  
对利用转基因的方法获得植物雄性不育的研究进展进行了概述 .小孢子发育过程涉及花药发育到花粉粒成熟过程中一系列基因的表达 .这些基因表达的异常往往导致部分或全部的花粉败育 .利用绒毡层特异性启动子或花药特异性启动子驱动一种外来基因的表达可以导致雄性不育 .育性的恢复也可通过转基因技术来实现 .控制植物育性的基因工程将在优势育种中发挥越来越重要的作用 .  相似文献   

19.
茄子雄性不育株和可育株的胞质DNA和核DNA差异分析   总被引:2,自引:0,他引:2  
以茄子(Solanum melongenaL)雄性不育株“正兴1号”(S)和可育株(F)的总DNA为模板,对60个随机引物进行了筛选,找到5个其RAPD(Random amplified polymorphic DNA,RAPD)扩增产物在茄子雄性不育系和对照材料间存在稳定差异的引物.将该5个引物同时扩增总DNA、核DNA和线粒体DNA(mitochondrial DNA,mtDNA).以总DNA为模板时得到多态性片段9个,以核DNA为模板时得到5个,以mtDNA为模板时得到9个.以总DNA为模板时得到的9个扩增片段中,有5个在总DNA和mtDNA中同时出现,而在核中没有出现,即认为来自mtDNA,这5个片段中,有4个来自可育株,1个来自不育株,说明不育株和可育株在mtDNA上存在差异;有4个片段同时出现在以总DNA和核DNA为模板的扩增中,但在以mtDNA为模板的扩增中却没有出现,认为是来自核DNA,这4个片段中,有3个来自不育株,一个来自可育株,说明可育株和不育株在核DNA上也存在差异.结果初步表明:新发现的茄子雄性不育可能是核质相互作用所引起.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号