首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alcian blue and plumbagin induced transient Ca2+ release from fragmented sarcoplasmic reticulum. Dithiothreitol (DTT) and glutathione (GSH) partially blocked Ca2+ release induced by these oxidizing compounds. Pretreatment of alcian blue and plumbagin with DTT or GSH for more than 1 min was required to abolish the ability of the oxidizing compounds to release Ca2+. Mg2+ and ruthenium red completely blocked alcian blue-and plumbagin-induced Ca2+ release. These results suggest that oxidation of sulfhydryls on Ca2+ release channels induces Ca2+ release even in the presence of GSH in situ.  相似文献   

2.
Summary The role of Ca2+ in secretagogue-induced insulin release is documented not only by the measurements of45Ca fluxes in pancreatic islets, but also, by direct monitoring of cytosolic free Ca2+, [Ca2+]i. As demonstrated, using the fluorescent indicator quin 2, glyceraldehyde, carbamylcholine and alanine raise [Ca2+]i in the insulin secreting cell line RINm5F, whereas glucose has a similar effect in pancreatic islet cells. The regulation of cellular Ca2+ homeostasis by organelles from a rat insulinoma, was investigated with a Ca2+ selective electrode. The results suggest that both the endoplasmic reticulum and the mitochondria participate in this regulation, albeit at different Ca2+ concentrations. By contrast, the secretory granules do not appear to be involved in the short-term regulation of [Ca2+]i. Evidence is presented that inositol 1,4,5-trisphosphate, which is shown to mobilize Ca2+ from the endoplasmic reticulum, is acting as an intracellular mediator in the stimulation of insulin release.  相似文献   

3.
Calcium (Ca2+) is an universal second messenger that regulates the most important activities of all eukaryotic cells. It is of critical importance to neurons as it participates in the transmission of the depolarizing signal and contributes to synaptic activity. Neurons have thus developed extensive and intricate Ca2+ signaling pathways to couple the Ca2+ signal to their biochemical machinery. Ca2+ influx into neurons occurs through plasma membrane receptors and voltage-dependent ion channels. The release of Ca2+ from the intracellular stores, such as the endoplasmic reticulum, by intracellular channels also contributes to the elevation of cytosolic Ca2+. Inside the cell, Ca2+ is controlled by the buffering action of cytosolic Ca2+-binding proteins and by its uptake and release by mitochondria. The uptake of Ca2+ in the mitochondrial matrix stimulates the citric acid cycle, thus enhancing ATP production and the removal of Ca2+ from the cytosol by the ATP-driven pumps in the endoplasmic reticulum and the plasma membrane. A Na+/Ca2+ exchanger in the plasma membrane also participates in the control of neuronal Ca2+. The impaired ability of neurons to maintain an adequate energy level may impact Ca2+ signaling: this occurs during aging and in neurodegenerative disease processes. The focus of this review is on neuronal Ca2+ signaling and its involvement in synaptic signaling processes, neuronal energy metabolism, and neurotransmission. The contribution of altered Ca2+ signaling in the most important neurological disorders will then be considered.  相似文献   

4.
Summary Ketoconazole, an antimycotic agent, inhibits calcium binding and accumulation, and induces calcium release in sarcoplasmic reticulum. The Mg2+-ATPase and the (Ca2++Mg2+)-ATPase activities are stimulated at low but inhibited at high concentrations of ketoconazole.The author wishes to thank Dr K. S. Cheah for discussion and Mr C. C. Ketteridge for preparing the sarcoplasmic reticulum and carrying out the ATPase assays.  相似文献   

5.
PF9601N, N-(2-propynyl)-2-(5-benzyloxy-indolyl) methylamine, an monoamine oxidase (MAO) B inhibitor, has shown neuroprotective properties against dopaminergic toxins. To elucidate the mechanisms involved in this protection, the effect of PF9601N on mitochondria was assessed. PF9601N prevents mitochondrial swelling, drop in the electrical potential and oxidation of sulfhydryl groups, glutathione and pyridine nucleotides induced by Ca2+. These observations demonstrate the protective effect of PF9601N on the induction of mitochondrial permeability transition. This protection is due to the interaction of the secondary protonated amino group in the molecule with pore-forming structures and to its antioxidant property, rather than to inhibition of MAO B activity. PF9601N also prevents the release of cytochrome c from mitochondria, suggesting its potential inhibitory effect on mitochondria-mediated apoptosis. The low IC50 value for this inhibition, in comparison with deprenyl, make it a more efficient compound than propargylamines and other amines in protecting the bioenergetic functions of mitochondria. Received 9 March 2006; received after revision 10 April 2006; accepted 21 April 2006  相似文献   

6.
The Ca2+-binding protein parvalbumin (PV) and mitochondria play important roles in Ca2+ signaling, buffering and sequestration. Antagonistic regulation of PV and mitochondrial volume is observed in in vitro and in vivo model systems. Changes in mitochondrial morphology, mitochondrial volume and dynamics (fusion, fission, mitophagy) resulting from modulation of PV were investigated in MDCK epithelial cells with stable overexpression/downregulation of PV. Increased PV levels resulted in smaller, roundish cells and shorter mitochondria, the latter phenomenon related to reduced fusion rates and decreased expression of genes involved in mitochondrial fusion. PV-overexpressing cells displayed increased mitophagy, a likely cause for the decreased mitochondrial volumes and the smaller overall cell size. Cells showed lower mobility in vitro, paralleled by reduced protrusions. Constitutive PV down-regulation in PV-overexpressing cells reverted mitochondrial morphology and fractional volume to the state present in control MDCK cells, resulting from increased mitochondrial movement and augmented fusion rates. PV-modulated, bi-directional and reversible mitochondrial dynamics are key to regulation of mitochondrial volume.  相似文献   

7.
Zn2+ in low concentrations (0.005–0.1 mM) inhibited the transient contractions in response to caffeine (25 mM) in a dose-dependent manner in smooth muscle of intact guinea-pig taenia caeci. At Zn2+ concentrations higher than 0.1 mM, caffeine did not elicit any response. After saponin-treatment of the fibres, which leaves the Ca2+ storage sites intact, caffeine contraction was completely inhibited by Zn2+ at a relatively low concentration (0.03 mM). However, in Triton-X-100-treated fibres, in which the Ca2+ release sites are destroyed, the contraction could be induced in the presence of Zn2+ by an increase in Ca2+. In conclusion, Zn2+ can block the intracellular Ca2+ release from caffeine-sensitive release sites in taenia caeci.  相似文献   

8.
Summary The effects of La3+ and ruthenium red on the energy-linked uptake of Ca2+ mediated by a synthetic neutral Ca2+ ionophore have been investigated in rat liver mitochondria. The results indicate that unspecific surface charge effects do not play a major role in the mechanism of inhibition of mitochondrial Ca2+ transport by La3+ and ruthenium red.Acknowledgments. The authors are indebted to Prof. W. Simon, ETH Zurich, for having provided samples of the synthetic neutral Ca2+ ligand, and to M. Mattenberger for the valuable technical assistence. The work was supported by a grant of the Swiss Nationalfonds (grant No. 3.1720.75).  相似文献   

9.
The ability of cells to migrate to the destined tissues or lesions is crucial for physiological processes from tissue morphogenesis, homeostasis and immune responses, and also for stem cell-based regenerative medicines. Cytosolic Ca2+ is a primary second messenger in the control and regulation of a wide range of cell functions including cell migration. Extracellular ATP, together with the cognate receptors on the cell surface, ligand-gated ion channel P2X receptors and a subset of G-protein-coupled P2Y receptors, represents common autocrine and/or paracrine Ca2+ signalling mechanisms. The P2X receptor ion channels mediate extracellular Ca2+ influx, whereas stimulation of the P2Y receptors triggers intracellular Ca2+ release from the endoplasmic reticulum (ER), and activation of both type of receptors thus can elevate the cytosolic Ca2+ concentration ([Ca2+]c), albeit with different kinetics and capacity. Reduction in the ER Ca2+ level following the P2Y receptor activation can further induce store-operated Ca2+ entry as a distinct Ca2+ influx pathway that contributes in ATP-induced increase in the [Ca2+]c. Mesenchymal stem cells (MSC) are a group of multipotent stem cells that grow from adult tissues and hold promising applications in tissue engineering and cell-based therapies treating a great and diverse number of diseases. There is increasing evidence to show constitutive or evoked ATP release from stem cells themselves or mature cells in the close vicinity. In this review, we discuss the mechanisms for ATP release and clearance, the receptors and ion channels participating in ATP-induced Ca2+ signalling and the roles of such signalling mechanisms in mediating ATP-induced regulation of MSC migration.  相似文献   

10.
Conclusions Sulfonylureas have a variety of effects on pancreatic B-cells. In the present review an attempt has been made to identify those that appear fundamental from a mechanistic point of view and in that sense common to all hypoglycemic drugs tested. On several points the available able experimental information is limited. With this reservation in mind, the following general hypothesis is presented for the insulin-releasing action of this class of drugs. Hypoglycemic sulfonylureas and related [(acylamino)alkyl]benzoic acids bind to the B-cell plasma membrane, a step in which hydrophobic anchoring is essential. Dissociated acidic COOH or SO2NHCO groups in the drugs are thus presented to an ion-gating protein in the plasma membrane, possibly in the vicinity of a pair of sulfur atoms. The reduced state of these sulfurs is promoted, preventing the formation of a disulfide bridge. K+ permeability is thereby decreased, favoring depolarization of the B-cell and Ca2+ influx through voltage-dependent channels. Finally, Ca2+ triggers the physiological apparatus for discharge of the insulin secretory granules. The effect of this insulinreleasing signal chain is amplified by cyclic AMP which increases in the B-cell as a consequence of depolarization and Ca2+ influx. This hypothesis does not attribute an ionophoretic role to the sulfonylureas per sebecause various experiments with cells and artificial membrane systems render such an idea apparently less tenable.  相似文献   

11.
Based on the findings that proinsulin C-peptide binds specifically to cell membranes, we investigated the effects of C-peptide and related molecules on the intracellular Ca2+ concentration ([Ca2+]i) in human renal tubular cells using the indicator fura-2/AM. The results show that human C-peptide and its C-terminal pentapeptide (positions 27–31, EGSLQ), but not the des (27–31) C-peptide or randomly scrambled C-peptide, elicit a transient increase in [Ca2+]i. Rat C-peptide and rat C-terminal pentapeptide also induce a [Ca2+]i response in human tubular cells, while a human pentapeptide analogue with Ala at position 1 gives no [Ca2+]i response, and those with Ala at positions 2–5 induce responses with different amplitudes. These results define a species cross-reactivity for C-peptide and demonstrate the importance of Glu at position 1 of the pentapeptide. Preincubation of cells with pertussis toxin abolishes the effect on [Ca2+]i by both C-peptide and the pentapeptide. These results are compatible with previous data on C-peptide binding to cells and activation of Na+,K+ATPase. Combined, all data show that C-peptide is a bioactive peptide and suggest that it elicits changes in [Ca2+]i via G-protein-coupled pathways, giving downstream enzyme effects. Received 13 May 2002; accepted 16 May 2002  相似文献   

12.
In the presence of Zn2+ (0.3 mM), carbachol (10–6 M) or histamine (10–5 M) induced the phasic response in guinea-pig taenia caeci while the tonic response was markedly inhibited. However, when the muscles were kept in Zn2+-containing medium following the first stimulation with either carbachol or histamine, neither application of carbachol nor of histamine elicited another phasic contraction. Caffeine (25 mM) did not induce contraction in the presence of Zn2+. After the washing out of caffeine in the presence of Zn2+, however, the muscle did then develop the phasic response on the application of carbachol or histamine. In conclusion, Zn2+ did not affect the carbachol or histamine-induced Ca2+ release from the storage sites. However, when Zn2+ was continuously present, Ca2+ was not supplied to the storage sites. Furthermore, carbachol and histamine mobilized a common cellular Ca2+ store, but they activated Ca2+ release channels different from the ones activated by caffeine in the Ca2+ storage sites.  相似文献   

13.
The ability of nonprotein thiols to modulate rates of protein synthesis was investigated in isolated rat hepatocytes. Addition of cysteine stimulates protein labelling by [14C] Leucine. Glutahione depletion, induced by in vivod administration of L-buthionine sulfoximine and diethylmaleate, did not alter the effect of cysteine, although it decreased the rate of protein synthesis by 32%. The effect of cysteine on protein synthesis does not seem to be related to a perturbatin of the redox state of the NAD+/NADH system or to changes in the rate of gluconeogenic pathway. The following observations indicate that cysteine may stimulate protein syntheis by increasing intracellular levels of aspartate: 1. Amino-oxyacetate, an inhibitor of pyridoxyal-dependent enzymes, inhibits protein labelling and decreases aspartate cellular content, whereas most amino acids accumulate or remain unchanged; 2. Cysteine, in the absence or in the presence of amino-ocycetate, stimulates protein labelling and induces aspartate accumulation, although mot amino acids diminish or remain unchanged.  相似文献   

14.
Summary Morphine inhibited the noradrenaline release from slices of rat brain cortex induced by introduction of Ca2+ ions after superfusion with Ca2+-free, K+-rich solution. The degree of inhibition was inversely related to the Ca2+ concentration used for stimulation.Acknowledgment. We thank Mrs G. Thielecke and Miss G. Werthmann for technical assistance.  相似文献   

15.
Summary Potassium movements were monitored in liver mitochondria from control and alloxan diabetic rats with a cationic electrode. There was net accumulation of K+ after Ca2+ addition to the mitochondria with the diabetic but not with the control.  相似文献   

16.
The dose-dependent effect of CGP 45715A on the LTD4-induced Ca2+ response of glomerular mesangial cells has been studied. Our results demonstrate that the LTD4-dependent increase in the cytosolic Ca2+ concentration primarily involves an InsP3-mediated release of Ca2+ from intracellular storage sites and to a minor extent an enhanced influx of Ca2+ through receptor-operated Ca2+ channels located in the plasma membrane. The action of CGP 45715A on the Ca2+ response is an inhibitory one and is convincingly explained by a displacement of LTD4 from its receptor site(s). The contractile effect of LTD4 on pulmonary smooth muscle is proposed to be mainly caused by a receptor-mediated hydrolysis of phosphatidylinositol-4,5-bisphosphate.  相似文献   

17.
Ca2+ signaling plays a crucial role in virtually all cellular processes, from the origin of new life at fertilization to the end of life when cells die. Both the influx of external Ca2+ through Ca2+-permeable channels and its release from intracellular stores are essential to the signaling function. Intracellular Ca2+ is influenced by mitogenic factors which control the entry and progression of the cell cycle; this is a strong indication for a role of Ca2+ in the control of the cycle, but surprisingly, the possibility of such a role has only been paid scant attention in the literature. Substantial progress has nevertheless been made in recent years in relating Ca2+ and the principal decoder of its information, calmodulin, to the modulation of various cycle steps. The aim of this review is to critically discuss the evidence for a role of Ca2+ in the cell cycle and to discuss Ca2+-dependent pathways regulating cell growth and differentiation. Received 2 March 2005; received after revision 9 May 2005; accepted 24 May 2005  相似文献   

18.
Astrocytes are a heterogeneous population of cells that are endowed with a great variety of receptors for neurotransmitters and neuromodulators. Recently prostaglandin E2 has attracted great interest since it is not only released by astrocytes but also activates receptors coupled to either phospholipase C or adenylyl cyclase. We report that EP2 receptor stimulation triggers cAMP production but also causes release of Ca2+ from intracellular stores. This effect is shared by other receptors similarly coupled to adenylyl cyclase and elicited by direct stimulation of the enzyme or application of cAMP analogues. However, the stimulation of the Ca2+ response by cAMP is not mediated by protein kinase A, since a specific antagonist of this kinase had no effect. Such a cross-talk between cAMP and Ca2+ was not observed in all astrocytes. It might therefore reflect a specific resource of either a subpopulation or astrocytes in a specific functional state. Received 6 June 2006; received after revision 25 July 2006; accepted 31 August 2006  相似文献   

19.
The long-recognized fact that oxidative stress within mitochondria is a hallmark of mitochondrial dysfunction has stimulated the development of mitochondria-targeted antioxidant therapies. Melatonin should be included among the pharmacological agents able to modulate mitochondrial functions in cancer, given that a number of relevant melatonin-dependent effects are triggered by targeting mitochondrial functions. Indeed, melatonin may modulate the mitochondrial respiratory chain, thus antagonizing the cancer highly glycolytic bioenergetic pathway of cancer cells. Modulation of the mitochondrial respiratory chain, together with Ca2+ release and mitochondrial apoptotic effectors, may enhance the spontaneous or drug-induced apoptotic processes. Given that melatonin may efficiently counteract the Warburg effect while stimulating mitochondrial differentiation and mitochondrial-based apoptosis, it is argued that the pineal neurohormone could represent a promising new perspective in cancer treatment strategy.  相似文献   

20.
Histamine release from rat peritoneal mast cells induced by anti-IgE was essentially complete within 4–5 min. Xestobergsterol A and B, which are constituents of the Okinawan marine spongeXestospongia bergquistia Fromont, dose-dependently inhibited anti-IgE-induced histamine release from rat mast cells. The IC50 values of xestobergsterol A and B for histamine release in mast cells activated by anti-IgE were 0.07 and 0.11 M, respectively. Anti-IgE stimulated PI-PLC activity in a mast cell membrane preparation. Xestobergsterol A dose-dependently inhibited the generation of IP3 and membrane-bound PI-PLC activity. Moreover, xestobergsterol A inhibited Ca2+-mobilization from intracellular Ca2+-stores as well as histamine release in mast cells activated by anti-IgE. On the other hand, xestobergsterol B did not inhibit the membrane-bound and cytosolic PI-PLC activity, IP3 generation or the initial rise in [Ca2+]i in mast cells activated by anti-IgE. These results suggest that the mechanism of inhibition by xestobergsterol A of the initial rise in [Ca2+]i, of the generation of IP3, and of histamine release induced by anti-IgE, was through the inhibition of PI-PLC activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号