首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用滴涂法制备了反式双氨基四苯基卟啉修饰电极(trans-d-A-TPP/GCE),并用原子力显微镜(atomic force microscopy)对其进行了表征,用循环伏安法研究了该修饰电极的电化学性质.建立了一种识别汞离子的溶出伏安分析方法,在0.2 mol·L-1NaAc-HAc(pH 3.6)支持介质中,在-0.5 V电位下富集200 s,汞离子响应的线性范围为1.0×10-8mol·L-1~1.0×10-6mol·L-1,检出限1.0×10-9mol·L-1.对实际水样进行了测定,结果满意.  相似文献   

2.
将疏水性离子液体N-己基吡啶六氟磷酸盐作为粘合剂和修饰剂,与碳粉混合,然后压制到电极管中制备出一种碳离子液体糊电极(CILE).用预镀铋膜法将铋离子沉积在CILE表面制备的铋膜修饰电极(Bi/CILE)作为工作电极,利用阳极溶出伏安法测定痕量铅离子.在p H 5.0的HAcNa Ac缓冲溶液中,当富集电位为-1.4 V,富集时间为300 s,铅离子有一个灵敏的阳极溶出伏安峰,峰电位为-0.457 V(vs.SCE),在8.0×10-8mol/L~4.0×10-5mol/L浓度范围内,氧化溶出峰电流与Pb(II)的浓度呈很好的线性关系,检出限为2.05×10-8mol/L,重现性良好,并将该方法成功用于生活自来水样中铅离子含量的测定.  相似文献   

3.
硫氰根离子的测定方法有SCN-离子选择电极法,极谱法,伏安法等.这些方法的灵敏度都较低.等人研究了银电极上痕量的SCN~-离子的阴极溶出伏安法,检出限为2×10~(-6)M,但形成两个与AgSCN还原相对应的阴极溶出峰.Bilewicz提出了采用Cu-Hg齐电极的阴极溶出伏安法,检出极限可达到2×10~(?)M,是目前文献上所记载的最灵敏的方法,然而该方法不仅电极制备麻烦,而且其线性范围较窄. 本方法采用由纯汞制成的悬汞滴电极进行痕量SCN~-离子的阴极溶出伏安法测定,溶液中加入一定量的Cu~(2 )离子,它还原为金属Cu后就立即与悬汞滴结合,同样可形成Cu-Hg齐,因此,操作更为简便,其线性范围可达1×10~(?)~4×10~(-7)M,检出限量达到1×10~(-9)M.  相似文献   

4.
本文研究了N-(8-喹啉基)-N’-苯甲酰基硫脲的极谱性质。发现在0.1mol·L~(-1)KBr-0.05mol·L~(-1)NaOH/K_2HPO_4溶液中,其产生三个清晰的阴极化示波极谱波,二次导数峰电位分别为-0.40V,-0.77V及-1.20V(VS.SCE),相应的线性范围依次是1.0×10~(-6)~4.0×10~(-5)mol·L~(-1),1.0×10~(-6)~5.0×10~(-5)mol·L~(-1),1.0×10~(-8)~2.0×10~(-6)mol·L~(-1)。文中对极谱波性质和电极反应机理进行了探讨。研究表明,前两峰分别为>C=S,>C=O的电还原,后者为氢催化波。  相似文献   

5.
利用膨胀石墨电极在正电位区域残余电流低、基线平稳的特点,采用循环伏安法、差分脉冲伏安法和紫外可见分光光度法,研究了左氧氟沙星在膨胀石墨电极上的伏安行为,并建立了测定左氧氟沙星的新方法。在0.2 mol·L-1KH2PO4-Na2HPO4(p H=5.29)的缓冲溶液中,左氧氟沙星在+1.0 V(vs.SCE)处有一灵敏的不可逆氧化峰,采用差分脉冲伏安法对左氧氟沙星进行检测。在优化的实验条件下,峰电流与左氧氟沙星浓度在7.0×10-8~2.0×10-5mol·L-1范围内呈线性关系,检出限为3×10-8mol·L-1(s/n=3),对1.0×10-6mol·L-1左氧氟沙星平行测定11次的相对标准偏差为2.2%.方法选择性好、灵敏度高,用于胶囊中左氧氟沙星含量的测定,回收率在96%~105%之间。结果表明,左氧氟沙星在膨胀石墨电极表面发生了吸附控制的两电子、两质子不可逆氧化过程。  相似文献   

6.
制备了羧基化碳纳米管修饰碳糊电极(MWCNT/CPE),并研究了Cu(Ⅱ)-SPAPT络合物在该电极上的吸附伏安行为,建立了一种测定痕量铜的新方法。采用二阶导数线性扫描溶出伏安法进行分析。结果表明:在0.1 mol/L的HAc-NaAc(pH=4.0)中,于-400 mV处搅拌富集一定时间,从-400~600 mV范围内以250 mV/s的扫描速度线性扫描,络合物吸附在MWCNT/CPE表面,于66 mV(vs.SCE)处产生一灵敏的阳极溶出峰,其峰电流与Cu(Ⅱ)浓度在4×10-11mol/L-8×10-9mol/L和8×10-9mol/L-1×10-7mol/L范围内分两段呈良好的线性关系,检出限(S/N=3)为2.2×10-11mol/L(富集时间240 s)。同时,探讨了电极反应机理。该方法操作简便、灵敏度高,应用于人发中铜含量的测定,结果满意。  相似文献   

7.
应用电位溶出分析法,在0.35M NaNO_3 pH=1.4中能测定Sn(Ⅳ)和Sn(Ⅱ)。当使用溶解的氧为氧化剂(7.9×10~(-5)M),预富集时间为4分钟时,此法的测定灵敏度为1×10~(-9)M。循环伏安法显示,Sn(Ⅱ)→Sn(0)是最主要的还原步骤;而在氧化过程中,Sn(0)→Sn(Ⅱ)是最主要的氧化步骤。进行了各种干扰离子的实验。可以将干扰离子分为两类:(1) 与Sn的氧化电位(—0.45Vvs.Ag/AgCl相同者,能使Sn的过渡时间(或称消失时间)增长。(2) 对Sn呈现氧化作用者,使Sn的过渡时间缩短。当有与Sn(Ⅳ)或Sn(Ⅱ)形成络合物的试剂存在时,例如磷苯三酚和α巯基乙酸,由于形成的络合物吸附在电极表面,能使灵敏度提高三至四个数量级。磷苯三酚及α巯基乙酸存在时的灵敏度分别为1×10~(12)M和1×10~(-13)M。循环伏安法显示存在着这种吸附。利用吸附效应进行电位溶出分析的方法称为吸附电位溶出分析法。测定了若干水样中的微量锡的含量。所得的结果与阳极溶出法和分光光度法相对照。  相似文献   

8.
研究了呋喃坦啶(FDT)在0.1 mol/L HAc-NaAc(pH=4.0)中于悬汞电极(HMDE)上的电化学行为.在-0.1~-0.5 V(vs.SCE)内FDT在悬汞电极上产生一不可逆的还原电流峰,峰电位为-0.28 V(vs.SCE),电流峰具有吸附特性.实验测得电极反应的电子转移数、转移系数和参与电极反应的H 数分别为4、0.63和4.考察了吸附富集时间、扫速和FDT浓度等因素对电极过程的影响.提出了电极反应机理.建立了对FDT测定的吸附溶出伏安法,峰电流与FDT浓度在8.0×10-9~5.0×10-6mol/L范围内呈线性关系,检出限为5.0×10-9mol/L.该法用于片剂中FDT含量的测定,得到满意的结果.  相似文献   

9.
报道了同时测定痕量锌和镉的新方法 .在 0 .0 1mol/LHAc - 0 .0 1mol/LNaAc- 1.2× 10 - 5mol/L乙醛酸缩氨基硫脲 (GATSC)中 ,Zn -GATSC和Cd -GATSC均产生非常灵敏的吸附波 ,峰电位分别是 - 0 .82V和 - 0 .4 3V(vs·SCE) ,峰电流和锌、镉的浓度分别在 3.0× 10 - 8~ 8.0× 10 - 7mol/L和 1.0× 10 - 8~ 6 .0× 10 - 7mol/L范围内成直线关系 ,检测限分别是 8.0× 10 - 9和 3.0× 10 - 9mol/L .该方法用于测定水中痕量锌和镉 ,结果令人满意  相似文献   

10.
用示波极谱阳极溶出法作三氯化金试剂(分析纯)中痕量铜铅的定量测定,以玻璃碳电极为工作电极。用环戊醇苹取试样水溶液中的大量基体元素Au~(3+),用还原剂还原剩余在水相中的少量 Au~(3+),在 pH=3.3的 HCl 介质中,作阳极溶出测定铜,富积电位-0.6伏(VS.SCE,下同),富积时间2分钟,铜溶出峰电位-0.11伏。测完铜后,用双硫腙-四氯化碳革取掉铜,剩余水相作阳极溶出测定铅,富积电位-1.5伏,富积时间2分钟,铅溶出峰电位-0.55伏。本方法可测至1ppb 的铜和10ppb 的铅,两者回收率平均误差分别为+4%和-7%。  相似文献   

11.
研究了1-(2-吡啶偶氮)-2-萘酚修饰玻碳电极检测痕量汞的电分析方法.汞离子通过与电极表面的1-(2-吡啶偶氮)-2-萘酚发生配位作用而富集在电极表面,同时在-0.80 V(vs.SCE)还原成零价的汞,当电极电势从-0.80 V向0.00 V扫描时,被还原的汞则从电极表面溶出,于-0.18 V处出现灵敏的阳极溶出峰.优化了支持电解质及pH、1-(2-吡啶偶氮)-2-萘酚的用量、富集电位及富集时间等实验参数.利用1-(2-吡啶偶氮)-2-萘酚修饰电极测定的汞的线性范围为2.0×10-9mol/L到9.0×10-7mol/L,检测限为6×10-10mol/L.此方法用于水试样中汞含量的测定,平均回收率为99.88%.  相似文献   

12.
用循环伏安法、线性扫描伏安法、微分脉冲伏安法对双氯芬酸钠在乙炔黑电极上的伏安行为进行了研究.发现在0.3mol/LH2SO4介质中,于 0.48V(vs SCE)左右产生一灵敏的氧化峰,该氧化峰的峰电流与双氯芬酸钠的浓度在3×10-7~1.0×10-5mol/L范围内有良好的线性关系,开路富集2m in后检出限为1.0×10-7mol/L.3×10-6mol/L双氯芬酸钠溶液平行测定8次的相对标准偏差(RSD)为4.9%,测定了扶他林片剂中双氯芬酸钠的含量.  相似文献   

13.
通过连续循环伏安法在含3.15×10-4 mol.L-1中性红单体和0.1 mol.L-1[HEMIm][BF4]离子液体的磷酸缓冲溶液中得到离子液体掺杂的中性红修饰电极.将该修饰电极置于磷酸缓冲溶液中可观察到一对氧化还原峰,其阴极峰电位和阳极峰电位分别位于-0.593 9 V和-0.464 9 V(versus SCE).进一步研究发现,该修饰电极的氧化峰对过氧化氢的电化学行为表现出良好的阻抑作用.据此,建立测定过氧化氢的阻抑电化学新方法,线性范围为0-2.73×10-8 mol.L-1,方法检出限为1.11×10-8 mol.L-1.  相似文献   

14.
灰黄霉素在0.1 mol*L-1 HAc-NaAc缓冲溶液(pH=5.86)中,于Co-GC离子注入修饰电极上,形成一良好的线性扫描伏安还原峰,峰电位Ep=-0.63 V(vs.SCE).峰电流ip与灰黄霉素浓度在5.0×10-9~1.1×10-6 mol*L-1范围内成线性关系,相关系数为0.999 8,检测限可达2.0×10-9 mol*L-1,可用于痕量物质的测定.用线性扫描与循环伏安法等手段研究了体系的性质,实验表明电极反应为不可逆吸附过程.用AES和XPS对电极表面进行了表征.  相似文献   

15.
钛在10- -碳烯氧肟酸(UHA)-氯化锂介质中有灵敏的阴极化导数波,峰电位-1.66伏(VS.SCE),峰电流与钛离子浓度在4.0×10~(-9)~4.0×10~(-7)mol.L~(-1)范围内呈良好的线性关系。读者以此为基建拟定了钢中微量钛的分析方法。文中对极谱的反应机理、电极过程作了讨论,确证题示络合物组成Ti(I V):UHA=1:2,络合物稳定常数K_稳=8.1×10~(-12),本方法灵敏度较现行方法高约两个数量级,干扰少,简便,有推广应用价值。  相似文献   

16.
用循环伏安法和控制电位库仑法研究了葛根素在多壁碳纳米管糊电极(MCNT-PE)上的阳极伏安行为及反应机理.在pH为5.72的B-R缓冲液中,葛根素于+0.64 V(vs.SCE)处产生一氧化峰.其电极反应是有吸附特征的不可逆单电子单质子过程.与碳糊电极(CPE)相比,葛根素在MCNT-PE上的峰电位降低,峰电流增加.表明碳纳米管对葛根素的电化学氧化有催化作用.探讨了产生催化作用的原因.拟定了方波吸附溶出伏安法测定葛根素的新方法.线性范围为8.0×10-1~2.0×10-5mol/,L,检出限为3.6×10-7mol/L.用本法测定了药物制剂中葛根素的含量,测得值与标示值吻合,回收率在95.1%~104.0%之间.  相似文献   

17.
用漆酚金属盐聚合物修饰碳糊电极能高灵敏度测定水样中痕量的Cu~(2+)。在pH6.0的HAc+NaAc缓冲溶液中,在电极表面Cu~(2+)通过化学和物理吸附而富集,在溶出过程中,于-0.04V(vs.SCE)处有一灵敏的氧化峰。该修饰电极测定Cu~(2+)的线性范围为4×10~(-9)~2.5×10~(-7) mol/L,富集20min后检测限为8×10~(-11)mol/L。用该修饰电极测定了环境水样中的铜离子,平均回收率为99.10%。  相似文献   

18.
用氧化石墨烯-氧化镍纳米复合膜修饰玻碳电极,制备了电化学传感器.用循环伏安法研究了铅在该电极上的电化学行为,建立了差分脉冲溶出伏安法测定痕量铅的电化学分析法,详细优化了氧化石墨烯的用量、富集电位、富集时间、电聚圈数、底液的pH值等测定条件.研究结果表明:在优化条件下,Pb2+的浓度在1×10-7~1×10-6mol/L的范围内与溶出峰电流呈良好的线性关系,检出限为1×10-8mol/L.将该方法用于水样中Pb2+的测定,回收率为96.5%~104.2%.  相似文献   

19.
在含有1.15×10-2mol·l-1乙二胺、5.77×10-2mol·l-1NaNO2的NH3·H2O-MH4Cl缓冲溶液(PH=9.4)中,铬在单扫描示波极谱仪上产生灵敏的极谱催化波。峰电位为-1.70V(VS.SCE),检测下限为0.1ng·ml-1,线性范围为0.1-20ng·ml-1。方法用于人及中痕量铬的测定,结果满意。  相似文献   

20.
利用微分电位溶出分析法,以0.09 mol/L草酸、7.5×10-5mol/L中性红为底液,同时测定了4种样品中的铅、锡含量,二元素峰电位分别为-0.52 V和-0.62 V(vs SCE),铅、锡的线性范围分别为2.0~100.0 ng/mL、5.0~250.0 ng/mL.当富集时间为60 s时,铅、锡的检出限分别为2 ng/mL和5 ng/mL.将此法应用于测定食品中痕量铅和锡,结果满意.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号