共查询到20条相似文献,搜索用时 0 毫秒
1.
T_E(X)中局部方向保序变换半群的Green关系和正则性 总被引:1,自引:1,他引:0
设X为有限集合,OPPE(X)为TE(X)中局部方向保序变换半群.研究了OPPE(X)的G reen关系与正则性. 相似文献
2.
设X为有限集合,OPPE(X)为TE(X)中局部方向保序变换半群.研究了OPPE(X)的Green关系与正则性. 相似文献
3.
令Tn为有限集X n={1,2,?,n}上的全变换半群.研究子半群Cn={α∈Tn|(A)x,y∈Xn,x≤y(→)xα≤yα且xα≤x}.特别得到Cn的每一个G reen关系都是恒等关系,且每一个正则元都是幂等元;进一步Cn的每一个L*类和每一个R*类都仅含唯一个幂等元,但不是L*-幂单的和R*-幂单的. 相似文献
4.
一类保等价关系部分变换半群的Green关系和正则性 总被引:1,自引:0,他引:1
设X为任意集合且X≥3,PX为集合X上的部分变换半群,对于X上的非平凡等价关系E,令PE(X)={f∈PX:(a,b)∈E,(f(a),f(b))∈E},那么PE(X)是PX的一个子半群.从较特殊的情况出发,考虑E为X上的单等价关系,即E=(A×A)∪Δ(X)其中A是X的真子集且A>1,Δ(X)=(x,x):x∈X.给出了PE(X)的正则元的充分必要条件及PE(X)的正则性,刻划了PE(X)的Green关系及PE(X)的正则元之间的Green关系. 相似文献
5.
一类有限变换半群的Green关系 总被引:2,自引:0,他引:2
裴惠生 《信阳师范学院学报(自然科学版)》2002,15(3):258-261
在[5]中作者考察过一类变换半群,即TE(X){f∈Fx,任意(a,b)∈E,(f(a),f(b))∈E},这里E是集合X上任一等价关系,当X带上以所有E类为基的拓扑时,TE(X)恰是拓扑空间X上的连续自映半群。本文讨论了半群TE(X)上的Green关系,并且当X为有限集,E是单等价关系时,给出了全部Green关系的刻划。 相似文献
6.
设X为有限集合, E为X上的等价关系, 令OIE*(X)为所有E类保序严格部分一一变换所构成的半群. 在一定条件下讨论OIE*(X)的极大逆子半群. 相似文献
7.
设X为有限全序集合,E为X上的等价关系。令OIE*(X)为所有E类保序部分一一变换所构成的半群。在一定的条件下讨论了OIE*(X)的秩。 相似文献
8.
有限夹心半群T(X,Y;θ)的正则性与Green关系 总被引:1,自引:1,他引:1
设X,Y是非空集合。记T(X,Y)为X到Y的映射全体构成的集合,θ是Y到X的一个确定的映射,α,β∈T(X,Y),定义运算:αβ=αθβ,这里,αθβ表示一般映射的合成。则T(X,Y)关于运算构成一个半群,称为夹心半群T(X,Y;θ)。当X,Y都为有限集合且|X|>1,|Y|>1时,称夹心半群T(X,Y;θ)为有限夹心半群。讨论了T(X,Y;θ)、T(X;θ)和TX之间的联系,研究了有限夹心半群T(X,Y;θ)的正则性和G reen关系。 相似文献
9.
保整除变换半群的Green关系及一些组合结果 总被引:2,自引:1,他引:2
陈先军 《贵州师范大学学报(自然科学版)》2010,28(2):93-96,114
设Xn={1,2,…,n}是有限集,Tn是Xn上的全变换半群,令TD{Xn}={α∈Tn:x∈Xn,x|n■xα|n}那么TD{Xn}在变换的合成下构成Tn的一个子半群.刻划了TD{Xn}的Green关系和正则元,并得到了TD{Xn}的一些子集的基数计算公式. 相似文献
10.
11.
具有逆断面的正则半群在逆半群的研究中起到重要的作用,对此类半群上的Green关系作出探讨,可以得到一些相关的重要结论. 相似文献
12.
一类部分变换半群的Green关系 总被引:1,自引:0,他引:1
X为任意集且|X|≥5,E是X上的双等价关系,即E=(A×A)∪(B×B)∪Δ(X)其中A,B是X的真子集且|A|>1,|B|>1,Δ(X)={(x,x):x∈X}.PX表示集合X上的部分变换半群,令PE(X)={f∈PX:(a,b)∈E且a,b∈domf,(f(a),f(b))∈E},那么PE(X)是PX上的一个子半群.刻划了PE(X)的G reen关系. 相似文献
13.
设Jn为有限集X={1,2,…,n}上的全变换半群,Sn为Jn中所有奇异变换构成的子半群,记Sn-={f∈Sn:x∈X,f(x)≤x},Qn={f∈Jn:x,y∈X,x≤y f(x)≤f(y)},那么Sn-与Qn都是Tn的子半群,令Hn=S-n∩Qn,则Hn也是Jn的一个子半群,Hn的某些性质,诸如Green关系,Green星关系,秩和幂等秩都进行了研究,还证明了Hn是幂等元生成的,且可由J*中的n-1个幂等元生成. 相似文献
14.
15.
徐波 《贵州师范大学学报(自然科学版)》2012,(4):63-65
设Xn={1,2,…,n}(n≥4)为一个赋予通常序关系的自然数集,得到了Xn上保序压缩变换半群的极大子半群的结构与分类. 相似文献
16.
设Tn是Xn={1,2,…,n)上的全变换半群.设ρ是Xn上的一个等价关系,≤是Xn/ρ上的一个全序.对Xn上Tn的划分递减子幺半群T(ρ,≤)={α∈Tn:(xα)ρ≤ρ,(V)x∈Xn},在此刻划出它的Green*关系以及当n≥3时它既不是逆半群也不是完全正则半群. 相似文献
17.
设X是包含nm个元素的全序集,E为X上每个等价类都含有连续n个元素的等价关系.令SPOIE(X)为X上的所有保E且严格保序部分一一变换构成的半群.证明了SPOIE(X)的秩为nm. 相似文献
18.
设PCn是[n]上的降序且保序有限部分变换半群.对n≥3,证明了半群Pcn是由秩为n-1的幂等元生成的,且它的秩和幂等元秩都是2n -1. 相似文献
19.
设X为有限集合,E为X上的等价关系且IX是X上的对称逆半群。令IE*(X)={f∈IX:对任意的x,y∈dom(f),(x,y)∈E当且仅当(f(x),f(y))∈E},则IE*(X)是IX的逆子半群。设X为全序集,E为X上的凸等价关系。令OPIE*(X)为IE*(X)中所有方向保序部分一一变换作成的半群。这是一类全新的半群,有一定的难度和复杂性,通过对它的研究可以探求新的变换半群的结构与性质。本文讨论它的Green关系。 相似文献
20.
秦美青 《海南大学学报(自然科学版)》2012,30(2):103-106
在已有的保等价变换半群的基础上,引入了保等价变换半群的一类子半群保序且保等价变换半群,并在这类半群中规定新的运算,得出一类新的半群,称为保序且保等价变换半群的变种半群.利用格林关系的定义,刻画了这类半群上的格林关系. 相似文献