首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G A Mignery  T C Südhof  K Takei  P De Camilli 《Nature》1989,342(6246):192-195
Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) serves as an intracellular second messenger for several neurotransmitters, hormones and growth factors by initiating calcium release from intracellular stores. A cerebellar Ins(1,4,5)P3 receptor has been characterized biochemically and shown by immunocytochemistry to be present in intracellular membranes in Purkinje cells. We show that a previously described Purkinje-cell messenger RNA encodes a protein of relative molecular mass 260,000 (260 K) with the same properties as the cerebellar Ins(1,4,5)P3 receptor. Its sequence is partially homologous to the skeletal muscle ryanodine receptor. By immunocytochemistry and electron microscopy the protein is shown to be present in all parts of the endoplasmic reticulum, including those that extend into axon terminals and dendritic spines. Our results indicate that gated calcium release from intracellular stores in muscle and Purkinje cells uses similar calcium-channel proteins localized in analogous intracellular compartments. This implies that the intracellular calcium stores in the endoplasmic reticulum of neurons extend into presynaptic terminals and dendritic spines where they may play a direct role in regulating the efficacy of neurotransmission.  相似文献   

2.
Photoreceptor excitation and adaptation by inositol 1,4,5-trisphosphate   总被引:2,自引:0,他引:2  
A Fein  R Payne  D W Corson  M J Berridge  R F Irvine 《Nature》1984,311(5982):157-160
A central question concerning vision is the identity of the biochemical pathway that underlies phototransduction. The large size of the ventral photoreceptors of Limulus polyphemus renders them a favourite preparation for investigating this problem. The fact that a single photon opens approximately 1,000 ionic channels in these photoreceptors suggests the need for an internal transmitter. We have investigated whether inositol 1,4,5-trisphosphate (InsP3) functions as such an internal transmitter, given that InsP3 may act as an intracellular messenger in other cellular processes. Here we report that in Limulus, intracellular pressure injection of InsP3 both excites and adapts ventral photoreceptors in a manner similar to light.  相似文献   

3.
C D Ferris  A M Cameron  R L Huganir  S H Snyder 《Nature》1992,356(6367):350-352
Release of intracellular Ca2+ by inositol 1,4,5-trisphosphate (InsP3) occurs through specific receptor proteins which are ligand-activated Ca2+ channels. Changes in intracellular Ca2+ regulate many cellular functions. This Ca2+ release is a discontinuous quantal process in which successive increments of InsP3 transiently release precise amounts of Ca2+ (refs 4-6). Possible explanations of quantal Ca2+ release have included rapid degradation of InsP3, reciprocity of Ca2+ release and sequestration, desensitization of InsP3 receptors, or actions of InsP3 on discrete compartments of Ca2+ with variable sensitivity to InsP3 (ref. 4). We successfully reconstituted InsP3-induced Ca2+ flux in vesicles containing only purified InsP3 receptor protein. The reconstituted vesicles retain the regulatory features of the InsP3 receptor, including phosphorylation sites and modulation of Ca2+ release by adenine nucleotides. Using these reconstituted vesicles, we show here that quantal flux of Ca2+ elicited by InsP3 is a fundamental property of its receptor.  相似文献   

4.
Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), a second messenger molecule involved in actions of neurotransmitters, hormones and growth factors, releases calcium from vesicular non-mitochondrial intracellular stores. An Ins(1,4,5)P3 binding protein, purified from brain membranes, has been shown to be phosphorylated by cyclic-AMP-dependent protein kinase and localized by immunohistochemical techniques to intracellular particles associated with the endoplasmic reticulum. Although the specificity of the Ins(1,4,5)P3 binding protein for inositol phosphates and the high affinity of the protein for Ins(1,4,5)P3 indicate that it is a physiological Ins(1,4,5)P3 receptor mediating calcium release, direct evidence for this has been difficult to obtain. Also, it is unclear whether a single protein mediates both the recognition of Ins(1,4,5)P3 and calcium transport or whether these two functions involve two or more distinct proteins. In the present study we report reconstitution of the purified Ins(1,4,5)P3 binding protein into lipid vesicles. We show that Ins(1,4,5)P3 and other inositol phosphates stimulate calcium flux in the reconstituted vesicles with potencies and specificities that match the calcium releasing actions of Ins(1,4,5)P3. These results indicate that the purified Ins(1,4,5)P3 binding protein is a physiological receptor responsible for calcium release.  相似文献   

5.
M Kuno  P Gardner 《Nature》1987,326(6110):301-304
Hydrolysis of membrane-associated phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)-P2) to water soluble inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) is a common response by many different kinds of cells to a wide variety of external stimuli (see refs 1 and 2 for review). Ins (1,4,5)P3 is a putative second messenger which increases intracellular Ca2+ by mobilizing internal Ca2+ stores, a hypothesis which has been substantiated by studies with chemically permeabilized cells and with isolated microsomal membrane fractions. But the possibility that Ins(1,4,5)P3 could induce in intact cells an influx of external Ca2+ through transmembrane channels, originally hypothesized by Michell in 1975, has never been directly tested. We report here single-channel recordings of an Ins(1,4,5)P3-activated conductance in excised patches of T-lymphocyte plasma membrane. The Ins(1,4,5)P3-activated transmembrane channel appears to be identical to the recently described mitogen-regulated, voltage-insensitive Ca2+ permeable channel involved in T-cell activation. We suggest that Ins(1,4,5)P3 acts as the second messenger mediating transmembrane Ca2+ influx through specific Ca2+-permeable channels in mitogen-stimulated T-cell activation.  相似文献   

6.
In a variety of cells, the Ca2+ signalling process is mediated by the endoplasmic-reticulum-membrane-associated Ca2+ release channel, inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R). Being ubiquitous and present in organisms ranging from humans to Caenorhabditis elegans, InsP3R has a vital role in the control of cellular and physiological processes as diverse as cell division, cell proliferation, apoptosis, fertilization, development, behaviour, memory and learning. Mouse type I InsP3R (InsP3R1), found in high abundance in cerebellar Purkinje cells, is a polypeptide with three major functionally distinct regions: the amino-terminal InsP3-binding region, the central modulatory region and the carboxy-terminal channel region. Here we present a 2.2-A crystal structure of the InsP3-binding core of mouse InsP3R1 in complex with InsP3. The asymmetric, boomerang-like structure consists of an N-terminal beta-trefoil domain and a C-terminal alpha-helical domain containing an 'armadillo repeat'-like fold. The cleft formed by the two domains exposes a cluster of arginine and lysine residues that coordinate the three phosphoryl groups of InsP3. Putative Ca2+-binding sites are identified in two separate locations within the InsP3-binding core.  相似文献   

7.
Inositol 1,4,5-trisphosphate (InsP3) can stimulate skinned smooth and skeletal muscle to contract by initiating Ca2+ release from the sarcoplasmic reticulum. Whether this process is an integral component of the in vivo muscle activation mechanism was tested by releasing InsP3 rapidly within skinned muscle fibers of rabbit main pulmonary artery and frog semitendinosus. InsP3 was liberated on laser pulse photolysis of a photolabile but biologically inactive precursor of InsP3 termed caged InsP3. Caged InsP3 is a mixture of compounds in which InsP3 is esterified with 1(2-nitrophenyl)diazoethane (probably at the P4- or P5-position). Photochemical release of InsP3 induced a full contraction in both muscles at physiological free Mg2+ concentrations, but only in the smooth muscle were the InsP3 concentration (0.5 microM) and the activation rate compatible with the in vivo physiological response. Endogenous InsP3-specific phosphatase activity was present in smooth muscle and had about 35-fold greater activity than that in the skeletal-muscle preparation. Caged InsP3 was not susceptible to phosphatases in either preparation.  相似文献   

8.
M R Blatt  G Thiel  D R Trentham 《Nature》1990,346(6286):766-769
RECENT investigations suggest that cytoplasmic D-myo-inositol 1,4,5-trisphosphate (InsP3) functions as a second messenger in plants, as in animals, coupling environmental and other stimuli to intracellular Ca2+ release. Cytoplasmic levels of InsP3 and the turnover of several probable precursors in plants are affected by physiological stimuli--including light, osmotic stress and the phytohormone indoleacetic acid--and InsP3 activates Ca2+ channels and Ca2+ flux across plant vacuolar and microsomal membranes. Complementary data also link changes in cytoplasmic free Ca2+ to several physiological responses, notably in guard cells which regulate gas exchange through the stomatal pores of higher plant leaves. Recent evidence indicates that guard cell K+ channels and, hence, K+ flux for stomatal movements may be controlled by cytoplasmic Ca2+. So far, however, direct evidence of a role for InsP3 in signalling in plants has remained elusive. Here we report that InsP3 released from an inactive, photolabile precursor, the P5-1-(2-nitrophenyl)ethyl ester of InsP3 (caged InsP3) reversibly inactivates K+ channels thought to mediate K+ uptake by guard cells from Vicia faba L. while simultaneously activating an apparently time-independent, inward current to depolarize the membrane potential and promote K+ efflux through a second class of K+ channels. The data are consistent with a transient rise in cytoplasmic free Ca2+ and demonstrate that intact guard cells are competent to use InsP3 in signal cascades controlling ion flux through K+ channels.  相似文献   

9.
Inositol 1,4,5-trisphosphate (InsP3) mediates the effects of several neurotransmitters, hormones and growth factors by mobilizing Ca2+ from a vesicular, non-mitochondrial intracellular store. Many studies have indirectly suggested the endoplasmic reticulum (ER) to be the site of InsP3 action, though some have implicated the plasma membrane or a newly described smooth surfaced structure, termed the calciosome. Using antibodies directed against a purified InsP3-receptor glycoprotein, of relative molecular mass 260,000, in electron microscope immunocytochemical studies of rat cerebellar Purkinje cells, we have now localized the InsP3 receptor to ER, including portions of the rough endoplasmic reticulum, a population of smooth-membrane-bound organelles (smooth ER), a portion of subplasmalemmal cisternae and the nuclear membrane, but not to mitochondria or the cell membrane. These results suggest that in cerebellar Purkinje cells, InsP3-induced intracellular calcium release is not the property of a single organelle, but is effected by specialized portions of both rough and smooth ER, and possibly by other smooth surfaced structures. The present findings are the first immunocytochemical demonstration of an InsP3 receptor within a cell.  相似文献   

10.
Inositol 1,4,5-trisphosphate mimics muscarinic response in Xenopus oocytes   总被引:3,自引:0,他引:3  
Y Oron  N Dascal  E Nadler  M Lupu 《Nature》1985,313(5998):141-143
The enhanced metabolism of phosphoinositides, which is associated with a wide variety of stimuli and physiological responses, has been studied intensively. Berridge and his collaborators demonstrated that the first measurable reaction following cell membrane receptor activation is a rapid hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), and that the product of this reaction, inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), could cause a release of non-mitochondrial calcium. These findings have been verified in other systems. Although the relationship between the hydrolysis of PtdIns(4,5)P2 and the mobilization of intracellular calcium was clearly demonstrated, the direct link between Ins(1,4,5)P3 production and the physiological response was only implied. We have investigated the possibility that the intracellular release of Ins(1,4,5)P3 mediates the muscarinic-cholinergic response is Xenopus oocytes, and we show here that intracellularly injected Ins(1,4,5)P3 mimics the muscarinic depolarizing chloride current in Xenopus oocytes. This is the first demonstration of a direct link between phosphoinositides metabolism and a neuro-transmitter-induced physiological response.  相似文献   

11.
Wang Y  Li G  Goode J  Paz JC  Ouyang K  Screaton R  Fischer WH  Chen J  Tabas I  Montminy M 《Nature》2012,485(7396):128-132
In the fasted state, increases in circulating glucagon promote hepatic glucose production through induction of the gluconeogenic program. Triggering of the cyclic AMP pathway increases gluconeogenic gene expression via the de-phosphorylation of the CREB co-activator CRTC2 (ref. 1). Glucagon promotes CRTC2 dephosphorylation in part through the protein kinase A (PKA)-mediated inhibition of the CRTC2 kinase SIK2. A number of Ser/Thr phosphatases seem to be capable of dephosphorylating CRTC2 (refs 2, 3), but the mechanisms by which hormonal cues regulate these enzymes remain unclear. Here we show in mice that glucagon stimulates CRTC2 dephosphorylation in hepatocytes by mobilizing intracellular calcium stores and activating the calcium/calmodulin-dependent Ser/Thr-phosphatase calcineurin (also known as PP3CA). Glucagon increased cytosolic calcium concentration through the PKA-mediated phosphorylation of inositol-1,4,5-trisphosphate receptors (InsP(3)Rs), which associate with CRTC2. After their activation, InsP(3)Rs enhanced gluconeogenic gene expression by promoting the calcineurin-mediated dephosphorylation of CRTC2. During feeding, increases in insulin signalling reduced CRTC2 activity via the AKT-mediated inactivation of InsP(3)Rs. InsP(3)R activity was increased in diabetes, leading to upregulation of the gluconeogenic program. As hepatic downregulation of InsP(3)Rs and calcineurin improved circulating glucose levels in insulin resistance, these results demonstrate how interactions between cAMP and calcium pathways at the level of the InsP(3)R modulate hepatic glucose production under fasting conditions and in diabetes.  相似文献   

12.
L Missiaen  H De Smedt  G Droogmans  R Casteels 《Nature》1992,357(6379):599-602
Low concentrations of inositol 1,4,5-trisphosphate (InsP3) evoke a very rapid mobilization of intracellular Ca2+ stores in many cell types, which can be followed by a further, much slower efflux. Two explanations have been suggested for this biphasic release. The first proposes that the Ca2+ stores vary in their sensitivity to InsP3, and each store releases either its entire contents or nothing (all-or-none release); the second proposes instead that the stores are uniformly sensitive to the effects of InsP3, but that they can release only a fraction of their Ca2+ before their sensitivity is somehow attenuated (steady-state release). Experiments using purified InsP3 receptor molecules reconstituted into lipid vesicles have shown heterogeneity of the receptors in their response to InsP3 under conditions in which the total Ca2+ level at both sides of the receptor is held constant. We now report that in permeabilized A7r5 smooth-muscle cells incubated in Ca(2+)-free medium, the amount of 45Ca2+ remaining in the stores after the rapid transient phase of release is independent of their initial Ca2+ levels, indicating that partially depleted stores are less sensitive to InsP3. Moreover, if the stores are reloaded with 40Ca2+ after the first stimulus, reapplication of the same low concentration of InsP3 will release further 45Ca2+. This recovery of InsP3 sensitivity is almost complete. Under these conditions, Ca2+ release must thus occur by a steady-state mechanism, in which the decreasing Ca2+ content of the stores slows down further release.  相似文献   

13.
P Volpe  G Salviati  F Di Virgilio  T Pozzan 《Nature》1985,316(6026):347-349
The sarcoplasmic reticulum of skeletal muscle is a specialized form of endoplasmic reticulum that controls myoplasmic calcium concentration and, therefore, the contraction-relaxation cycle. Ultrastructural studies have shown that the sarcoplasmic reticulum is a continuous but heterogeneous membranous network composed of longitudinal tubules that surround myofibrils and terminal cisternae. These cisternae are junctionally associated, via bridging structures called 'feet', with sarcolemmal invaginations (the transverse tubules) to form the triadic junction. Following transverse tubule depolarization, a signal, transmitted along the triadic junction, triggers Ca2+ release from terminal cisternae, but the mechanism of this coupling is still unknown. Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) has recently been shown to mobilize Ca2+ from intracellular stores, referable to endoplasmic reticulum, in a variety of cell types (see ref. 8 for review), including smooth muscle cells of the porcine coronary artery and canine cardiac muscle cells. Here we show that Ins(1,4,5)P3 releases Ca2+ from isolated, purified sarcoplasmic reticulum fractions of rabbit fast-twitch skeletal muscle, the effect being more pronounced on a fraction of terminal cisternae that contains morphologically intact feet structures; and elicits isometric force development in chemically skinned muscle fibres.  相似文献   

14.
Several hormones and neurotransmitters raise the cytosolic free Ca2+ concentration by stimulating the influx of Ca2+ and/or by mobilizing stored Ca2+. However, the link between the agonist receptor on the cell surface and the organelle(s) from which Ca2+ is mobilized is unknown. One feature of the agonists that increase cytosolic Ca2+ is their rapid induction of phosphatidylinositol turnover and polyphosphoinositide hydrolysis; in some tissues this leads, within seconds, to a marked accumulation of the water-soluble products, inositol 1,4-bisphosphate ( Ins1 , 4P2 ) and inositol-1,4,5- trisphosphate ( Ins1 ,4, 5P3 ), suggesting that these might mediate Ca2+ mobilization from internal pools. Such an action of Ins1 ,4, 5P3 has recently been inferred from studies with permeabilized pancreatic acinar cells and hepatocytes. Here we show directly that Ins1 ,4, 5P3 rapidly releases Ca2+ from a microsomal fraction of rat insulinoma but not from mitochondria or secretory granules. Moreover, this response is transient and desensitizes the microsomes to subsequent Ins1 ,4, 5P3 additions. These results suggest that Ins1 ,4, 5P3 functions as a cellular messenger inducing early mobilization of Ca2+ from the endoplasmic reticulum.  相似文献   

15.
Cloning and expression of functional P400 protein from cerebellar Purkinje neurons shows that this protein is a receptor for inositol 1,4,5-trisphosphate, a second messenger that mediates the release of intracellular calcium.  相似文献   

16.
M Iino  M Endo 《Nature》1992,360(6399):76-78
The temporal and spatial distribution of increases in intracellular Ca2+ concentration is an important factor in cellular signal transduction. Inositol 1,4,5-trisphosphate (InsP3) plays a key part in agonist-induced Ca2+ release, which can take place abruptly and in a confined space by a mechanism that is not fully understood. Here we analyse the kinetics of InsP3-induced Ca2+ release following flash photolysis of caged InsP3 or caged Ca2+, and demonstrate that Ca(2+)-dependent immediate feedback control is an important determinant of the time course of Ca2+ release. The positive feedback mechanism is also important for the 'loading dependence' of InsP3-induced Ca2+ release. Furthermore, our results support the operation of positive cooperativity in channel opening and feedback control augments the steep InsP3 concentration-Ca2+ release relation. These inherent properties of InsP3-induced Ca2+ release are expected to give rise to temporally abrupt and/or spatially confined Ca2+ release within the cell.  相似文献   

17.
主要运用中心流形定理和分岔理论讨论了 IP3-Ca2+振荡模型的非线性动态,从理论上严格证明了系统不仅存在Saddle-node分岔和 Hopf分岔,而且揭示了系统振荡现象的产生和消失分别是由于平衡点发生Supercritical Hopf分岔和Subcritical Hopf分岔所导致的。通过运用matlab软件进行数值模拟,验证了理论分析结果的正确性。  相似文献   

18.
R F Irvine  A J Letcher  J P Heslop  M J Berridge 《Nature》1986,320(6063):631-634
Recent advances in our understanding of the role of inositides in cell signalling have led to the central hypothesis that a receptor-stimulated phosphodiesteratic hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) results in the formation of two second messengers, diacylglycerol and inositol 1,4,5-trisphosphate (Ins(1,4,5)P3). The existence of another pathway of inositide metabolism was first suggested by the discovery that a novel inositol trisphosphate, Ins(1,3,4)P3, is formed in stimulated tissues; the metabolic kinetics of Ins(1,3,4)P3 are entirely different from those of Ins(1,4,5)P3 (refs 6, 7). The probable route of formation of Ins(1,3,4)P3 was recently shown to be via a 5-dephosphorylation of inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4), a compound which is rapidly formed on muscarinic stimulation of brain slices, and which can be readily converted to Ins(1,3,4)P3 by a 5-phosphatase in red blood cell membranes. However, the source of Ins(1,3,4,5)P4 is unclear, and an attempt to detect a possible parent lipid, phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3), was unsuccessful. The recent discovery that the higher phosphorylated forms of inositol (InsP5 and InsP6) also exist in animal cells suggested that inositol phosphate kinases might not be confined to plant and avian tissues, and here we show that a variety of animal tissues contain an active and specific Ins(1,4,5)P3 3-kinase. We therefore suggest that an inositol tris/tetrakisphosphate pathway exists as an alternative route to the dephosphorylation of Ins(1,4,5)P3. The function of this novel pathway is unknown.  相似文献   

19.
采用5种蛋白酶分别对鸡肝进行水解,以水解度为指标,通过单因素试验,对原料预处理方法、酶解温度、pH、酶用量(E/S)、底物浓度及酶解时间等酶解条件进行优化,确定了Alcalase、Neutrase、Protamex、Fla-vourzyme以及木瓜蛋白酶水解鸡肝的工艺条件.综合比较酶解产物的水解度、氮回收率、感官质量和胆固醇含量发现,Alcalase水解能力最强,且产物苦味较弱;而Flavourzyme所得水解产物感官质量最好,无苦味,且具有较好的鲜味;酶解产物中均不含胆固醇.优选Alcalase用于单酶水解鸡肝,通过正交实验优化确定其最佳水解条件为:温度60℃,pH值8.0,加酶量1.25%,水解时间2.5h,底物浓度7.5%.在此条件下所得酶解液水解度为52.62%,氮回收率为85.32%.  相似文献   

20.
 1,3,4-三磷酸肌醇5/6-激酶(ITPK)是一种在动物、植物、线虫中都比较保守的多功能酶, 在生物信号传导及生长发育中起重要作用。为了充分研究玉米中ITPK 家族基因系统分析、全生育期基因表达模式及逆境胁迫表达模式, 利用玉米基因组数据库, 通过生物信息学手段, 鉴定玉米ITPK 家族基因的全序列、定位和编码蛋白, 通过序列比对进行进化和分类分析。利用玉米高通量芯片表达数据进行组织表达差异性、干旱胁迫和病害胁迫表达谱分析。结果表明, 玉米基因组中含有6 个ITPK 家族基因, 分布于玉米的4 条染色体上。MEME 保守结构域分析显示, ZmITPK1-5 均含有3 个保守的ATP-grasp-4 结构域, ZmITPK6 含有两个ATP-grasp-4 保守结构域。进化树分析表明ZmITPK 可分为3 个亚家族。各个发育阶段中, 多数成员在生殖器官或营养器官中均有较高的表达量, 只有ZmITPK1 在所有器官中表达量都不高。ZmITPK2 和ZmITPK3 基因受干旱胁迫处理诱导不同程度上调表达。而在生物胁迫条件下均无显著上调或下调表达。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号