首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为了提高碳电极材料的比容量,将悬浮聚合法合成的聚苯乙烯微球经高温碳化后,再通过浓HNO3液相处理制备改性碳微球电极材料.通过场发射扫描电子显微镜、透射电子显微镜、N2 吸附解吸仪和傅里叶红外光谱表征所合成碳微球和改性碳微球的形貌和微观结构,以及循环伏安法和恒流充放电法测试改性碳微球电极材料的电化学性能,结果表明:在0.625 A/g的电流密度下改性后碳微球比容量达到246 F/g,且在12.5 A/g的大电流密度下仍然具有比未改性碳微球明显高的比容量.  相似文献   

2.
利用碳球为还原剂,在中性KMnO4溶液中制备出MnO2/碳球复合材料,并对其结构和电化学性能进行了研究。结果显示,随着碳球含量的增加,MnO2/碳球复合材料的循环稳定性提高,但比电容量降低;当碳球质量分数为35%时,MnO2/碳球复合材料的比电容量在50mA/g的电流密度下达到181F/g。分别采用KOH活化和混酸氧化的碳球为还原剂,可以有效地提高MnO2/碳球复合材料的比电容量和循环稳定性,相应复合材料的比电容量分别达到192F/g和218F/g,而且经过500次的充放电测试,仍然保持为184F/g和192F/g。  相似文献   

3.
以苯酚和甲醛为原料,盐酸为催化剂,制备醇溶性酚醛树脂前驱体,探讨炭化温度对炭微球性能的影响,并将炭微球在3 mol/L HNO3溶液中活化后得到活性炭微球。利用红外光谱、X线衍射(XRD)、扫描电镜(SEM)、循环伏安、恒流充放电、循环寿命等对该材料进行表征及电化学性能测试。研究结果表明:炭微球的最佳炭化温度为750℃,在该温度下制备的炭微球具有良好的球形形貌,其结构为部分石墨化的无定形炭;活性炭微球作为电容器电极材料具有良好的电化学性能,在1 mV/s扫描速度下比电容达到247.8 F/g;在0.5 A/g电流密度充放电下扣式超级电容器比电容高达60 F/g,且充放电循环5 000次后比电容几乎没有衰减。  相似文献   

4.
以氨水作为催化剂,间苯二酚和甲醛为前驱体制备单分散酚醛(resorcinolformaldehyde,RF)树脂微球和碳微球.采用循环伏安法、电化学交流阻抗和恒电流充放电等方法对由RF树脂得到的碳微球的电化学性能的测试表明,其可以作为超级电容器电极材料.在扫描速率为1mV·s-1时,比电容为175.9F·g-1,电阻为0.5Ω,循环500圈后仍保持94.4%的电容量,具有优异循环寿命.结果表明,由酚醛树脂制备的单分散碳微球作为超级电容器的电极材料具有降低离子运输阻力和提高超级电容器稳定性的功能.  相似文献   

5.
以聚吡咯(PPy)纳米球为前驱体,经1 000℃高温炭化后,采用KOH在750℃进行活化制备多孔碳纳米球(PCS),并利用对巯基苯胺(PATP)与PCS进行溶剂热反应对PCS进行功能化处理,制备了高密度的功能化多孔碳纳米球(PATP-PCS).结果表明,经过PATP功能化之后,低密度的多孔炭材料转变为高密度的功能化炭材料.PATP-PCS的体积电容在0.5 A/g时可达183.63F/cm~3;当电流密度增大到20 A/g时,体积电容仍有123.14F/cm~3,显示出优异的倍率性能;在电流密度为10A/g的条件下,经过3 000次恒流充放电循环后,其循环寿命高达94.7%,表明了突出的循环稳定性.  相似文献   

6.
利用溶剂挥发结合高温热聚合法制备了氮掺杂多孔碳(NPC)材料,并通过SEM、TEM、TG、N_2吸附-脱附、XPS等表征手段对样品的微观形貌结构和元素组成进行了分析.结果表明,氮元素掺杂明显增加材料的比表面积和孔体积,当制备的氮掺杂多孔碳材料的含氮量为4.2%(原子分数)时,它的比表面积高达422.0m~2/g高于没有氮掺杂样品的301.1m~2/g.此外,采用循环伏安、恒电流充放电和交流阻抗对NPC材料的电化学性能进行了深入研究.测试结果表明氮元素掺杂能够明显增加材料的比电容量,降低材料的内阻,极大提高碳材料的电化学性能.在0.5A/g的电流密度下,通过氮元素掺杂使得材料的比电容从83.8F/g提高至162.8F/g,内阻值从1.39Ω降低至0.47Ω;并且所得的氮掺杂多孔碳样品具有良好的倍率性能和循环稳定性.  相似文献   

7.
8.
以炭气凝胶微球为原料,分别采用CO2和KOH作为活化剂,研究物理活化和化学活化对炭气凝胶微球孔结构和电化学性能的影响差异,探讨CO2和KOH的活化机理。结果表明,CO2和KOH活化均能有效改善炭气凝胶微球的孔结构,比表面积最高可达1 320 m2/g;同时显著提高材料的电化学性能,活化后的比电容最高可为活化前的3倍。结果还表明两种方法的活化机理不同,CO2活化,有利于保持炭气凝胶微球的中孔,为电子进出提供大量的快速通道,提高传质速率;KOH活化,对炭气凝胶微球的微孔形成非常有利,可增大电化学活化表面,提高电化学性能。  相似文献   

9.
采用简单的溶剂热法,一步合成黄铁矿型FeS2纳米微球,并研究其作为超级电容器电极材料的电化学性能.用X射线衍射(XRD)、扫描电镜(SEM)和氮气吸脱附法表征材料的结构和形貌,通过循环伏安(CV)、恒电流充放电(GCD)和电化学交流阻抗(EIS)测试材料在3种常见电解液(6 M KOH,6 M NaOH和1 M Na2...  相似文献   

10.
纯化及活化对螺旋碳纳米纤维形貌及电化学容量的影响   总被引:1,自引:0,他引:1  
采用盐酸对乙醇火焰燃烧制备的螺旋碳纳米纤维(CNCs)进行纯化,用KOH对纯化后的CNCs进行活化,利用透射电子显微镜(TEM)和氮气自动吸附仪分析了纯化及活化对CNCs形貌及孔结构的影响,并考察了活化后CNCs电化学容量的变化.结果表明:盐酸纯化处理去除了CNCs中大部分催化剂颗粒,并使比表面积增加;活化后CNCs长度明显变短,比表面积显著增加,纤维壁也较活化前变得粗糙;活化后的CNCs电化学容量显著提高,比电容由未经处理时的40 F/g提高到107 F/g.  相似文献   

11.
以甲醇为溶剂,乙酸镍为镍源,采用溶剂热法制备了具有分级结构的镍基花状微球.通过X射线衍射(XRD),场发射扫描电子显微镜(FE-SEM)和红外光谱对结构和性质进行了表征.利用循环伏安、恒流充放电和交流阻抗等方法对产物的超级电容性能进行系统研究.发现用此反应合成的产物在1 mol/L KOH溶液中,电流密度为1 A/g下充放电比电容达到1 698 F/g.同时具有大电流充放电性能,在电流密度为10 A/g时比电容为915 F/g,在5 A/g的电流密度下循环500次后容量仍然能够保持在首次的55%左右.结果表明,该方法制备的镍基花状微球具有良好的超级电容性能.  相似文献   

12.
文章以高纤维素废纸屑为原料,利用无机离子液体进行选择性表面溶解处理,得到具有润胀特性的胶状前驱体,在不同温度条件下热解制备生物质多孔碳。800℃下生物质多孔碳比表面积为1 276.3 m2/g,电化学测试结果表明,其具有较高的比电容(271 F/g),经过1 000次循环,电容保持率为90.3%。为了进一步提升超级电容器的电化学性能,在1 mol/L H2SO4电解液中加入15 g (NH4)2Fe(SO4)2·6H2O,超级电容器的比电容得到显著提升,电流密度为10 A/g时,比电容为439 F/g,为原电容器(221 F/g)的2倍。研究结果可为生物质多孔碳超级电容器制备提供参考。  相似文献   

13.
以碳布(CC)为基体、氧化锌纳米棒为模板,2-甲基咪唑为有机配体,采用水热与高温碳化方法,在碳布表面构建氧化锌纳米棒阵列复合材料(ZnO/C);利用电沉积法在ZnO/C复合物表面生长氢氧化镍(Ni(OH)_2)纳米片,获得碳布负载的氧化锌/碳/氢氧化镍(ZnO/C/Ni(OH)_2)核壳结构纳米棒阵列。对获得的复合材料进行形貌和结构表征,并对其电化学性能进行了测试。结果表明:复合物纳米棒阵列均匀生长在碳布表面,纳米棒外层由纳米片状Ni(OH)_2相互交叉堆叠而成;该复合材料作为超级电容器的电极材料时,在1.0 A/g的电流密度下比容量可以达到1 051.9 F/g;当电流密度增大到10 A/g后,比容量仍有644.5 F/g;在5.0 A/g的电流密度下进行5 000次循环充放电后,复合电极的比容量仍保留87.1%,展现出良好的电化学性能。  相似文献   

14.
采用一种具有潜在应用价值的1-乙基-3-甲基咪唑六氟磷酸盐作超级电容器的电解液,与活性炭电极组装成模拟超级电容器,与其他两种有机电解液进行循环伏安、恒流充放电、交流阻抗等电化学性能的比较.结果显示,1-乙基-3-甲基咪唑六氟磷酸酸盐(FMI-PF6)在循环性能、恒流充放电及高电压放电等方面优于甲基三乙基铵六氟磷酸盐(N...  相似文献   

15.
以KMnO4、NaOH和MnCl2为原料,在室温下采用液相氧化还原法制备了层状二氧化锰电极材料.分别采用X-射线衍射、扫描电子显微镜和N2吸附-脱附等方法对材料试样的晶型结构、表观形貌和比表面积等物理性能进行了表征; 采用循环伏安、恒流充放电和交流阻抗等电化学方法研究了材料试样的电化学性能.研究结果表明:所制备的层状二氧化锰为纳米材料,比表面积为89 m·g,在0.5 mol·LLi2SO4水系电解液中比电容为96.7 F·g,等效串联电阻为1 Ω,漏电流为0.24 mA,800次循环前后具有良好的循环稳定可逆性.  相似文献   

16.
以庨价的KOH为活化剂,将杨树叶前驱体转化为有序的多孔碳(HPC).用HPC组装的对称超级电容器表现出优庹的电化学弼能.HPC-4-500的比电容非常高,可以达到305 F/g,拥有着良好的倍率弼能.结果表明,HPC电极具有优庹的电化学弼能.因此,HPC将是一种适用于超级电容器应用的庨价活弼材料.  相似文献   

17.
采用间苯二酚与甲醛为原料,通过反相悬浮聚合,经超临界干燥和炭化成功制备了炭气凝胶微球(CA spheres),并以炭气凝胶微球为超级电容器的电极,采用恒流充放电法、循环伏安法与交流阻抗法测定了电极的储电性能。结果表明,制得的炭气凝胶微球可以作为超级电容器的电极,表现出良好的循环伏安特性,适用于多次充放电和大电流充放电,比电容可高达215 F/g。炭气凝胶微球的储电性能与合成条件、孔结构密切相关,最佳的制备反应条件为间苯二酚与催化剂摩尔比为200,间苯二酚-甲醛中间苯二酚的体积分数为50%及凝胶温度为85℃。  相似文献   

18.
超级电容器用活性炭电极的制备及电化学性能研究   总被引:2,自引:0,他引:2  
以石油焦为原料,采用KOH活化法制备比表面积为2 170 m^2/g的高比表面积活性炭,采用该材料作为电极材料,组装成超级电容器,并对它进行了恒电流充放电实验、循环伏安实验和交流阻抗等实验,结果表明,制备的活性炭作电极材料组装的电容器具有良好的电化学性能.  相似文献   

19.
以废弃杨木、柏木及核桃壳3种生物质为碳源,以磷酸为水热助剂和活化剂,经过水热碳化、活化后得到超级电容器用活性炭.用热分析系统对不同碳源的热分解过程进行了分析,用傅里叶红外光谱和X射线衍射仪分析了样品晶型与表面官能团,用恒流充放电和循环伏安法评价了样品的电化学性能以及影响电化学性能的关键因素.结果表明,在有机电解液中,当电流密度为0.1 A/g时,杨木活性炭样品的比容量高达97 F/g,当功率密度为757 W/kg时,其能量密度可达237 Wh/kg.本实验可对废弃生物质的高值循环利用提供参考.  相似文献   

20.
文中研究了一种用作生物大分子亲和色谱基体的二氧化锆与脲醛树脂复合物微球的制备方法。以水合氯化氧锆为起始原料,六次甲基四胺和尿素作为沉淀剂,在正庚烷乳液中生成 3~ 5μm的二氧化锆与脲醛树脂复合物微球。探讨了乳化剂和乳化助剂的种类、比例、搅拌速度等对复合物微球球径的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号