共查询到20条相似文献,搜索用时 15 毫秒
1.
针对油田电动机运行环境恶劣、结构复杂、故障信号中噪声干扰多的特点,采用基于小波变换的降噪方法对电动机故障信号进行特征提取,克服了传统滤波方法的缺陷,为提高电动机故障诊断的精度提供了一个有效工具。同时给出了一个应用实例。 相似文献
2.
针对连铸机状态评估问题,本文提出以一机两流连铸生产过程采集的拉矫力电流信号为特征来源的方案.首先,分析了信号变化与连铸机各工况的对应关系,并依此提取出两流同时处于正常浇铸工况时的信号;再根据两流信号的数值、趋势差异对样本进行标记;为保留信号的时序性和关联性以及综合信号变化对连铸机状态的影响,特对两流信号进行特征统计计算... 相似文献
3.
针对堆叠胶囊自编码器存在检测性能慢、不能更好挖掘图像局部特征的问题,本文提出基于流形正则的堆叠胶囊自编码器优化算法。采用Scharr滤波器对堆叠胶囊自编码器模型中的图像进行重建,加强图像目标检测的精度,并在损失函数中引入流形正则项,从而加强对原始数据空间局部特征的提取,最终使用基于流形正则的堆叠胶囊自编码器学习参数,选择出更加具有区别性的特征。在MNIST和Fashion MNIST数据集上的实验结果显示,该优化算法相比于原网络结构,图像分类准确率分别提高了0.26和9.23个百分点,且模型训练速度也得到较大提高。 相似文献
4.
网络行为识别一直是网络安全中的研究热点,随着网络中数据量的海量增大以及数据的非线性等问题的影响,对于网络行为识别的特征提取和识别技术提出更高的要求。文章提出了一种基于堆叠自动编码器的网络行为识别方法,该方法通过构建堆叠自动编码器和SOFTMAX分类器的深度学习框架,结合无监督的预训练和有监督的全局微调,优化堆叠自动编码器的特征提取性能,实现了网络行为特征的深度提取,从而对高校流量数据中上网行为进行分析识别。 相似文献
5.
针对目前复杂机械设备大多采用单特征值门限报警法,无法实现提前预警的现状,提出一种基于降噪自编码器(denoising autoencoder,DAE)的特征自学习方法,将高维监测数据编码成低维特征,作为设备运行状态的特征表示,通过度量待测样本编码特征与基准的距离实现故障预警。实验结果表明,本文方法能够区分正常样本特征与任意故障样本特征,并能降低变工况及环境噪声干扰的影响;工程应用案例表明,本文方法能够发现设备故障发生前的微弱征兆,实现提前预警。 相似文献
6.
7.
基于降噪及独立分量分析的轴承故障声信号特征提取 总被引:1,自引:0,他引:1
针对传统降噪算法的缺点,提出了将局部投影用于故障声信号的降噪.该算法具有较高的计算效率及广泛的应用前景,不仅可用于线性系统,而且还可用于非线性系统.而独立分量分析可用于分解相互独立的信号,它解决了多传感器信号的信息融合与特征提取问题.综合局部投影算法及独立分量分析算法两者的优点,提出了一种轴承弱故障特征识别算法.试验表明,该方法能有效地分离背景信号及特征信号. 相似文献
8.
针对风机叶片结冰检测中现有集成方法不能充分发挥不同个体分类器优势的问题,提出了一种基于特征提取和最优加权集成学习的叶片结冰检测模型。首先,用堆叠降噪自动编码器提取结冰关联特征后,考虑不同单一分类器在二分类应用中的表现及其差异,选择随机森林、极限梯度提升树、轻量梯度提升机、K-近邻算法作为个体学习器,并用贝叶斯算法对其进行超参数优化。然后提出基于序列二次规划的最优加权集成策略对叶片状态进行判别。最后利用金风科技提供的15号和21号风机的历史数据进行了仿真实验,结果表明:所提出的检测模型与个体学习器及其他集成模型相比多项指标均有所提升,准确度达到了99.2%,在结冰检测方面具有一定的有效性。 相似文献
9.
人类通常可同时进行多个任务的学习,将从一个任务中获得的知识应用到另一个任务中以加速此任务的学习.受此学习行为的启发,多任务学习(MTL)被提出并被广泛研究.与MTL动机类似,多任务优化(MTO)是在传统基于单任务优化算法基础上被提出的一种新型优化算法,该算法旨在同时在线执行多个任务,从一个任务中获取知识以帮助另一个任务,并进行任务间知识迁移,以提高多任务的优化性能.基于降噪自动编码器提出了一种新型MTO算法,推演出一种具有闭式解的降噪自动编码器,并利用此编码器显式地对多任务构建任务映射,从而使所提MTO算法能够利用不同的基于单任务优化算法的搜索偏好.采用常用的MTO基准进行综合性实验,验证了所提算法的有效性. 相似文献
10.
基于振动信号分析的齿轮箱故障诊断的关键是实现对信号中故障特征的提取.由于在工程实际中采集到的齿轮箱振动信号含有较强的噪声干扰,所以单一的信号分析方法难以实现对故障特征的提取.因此将两种或两种以上方法相结合应用于齿轮箱振动信号的处理成为当前的研究趋势.为研究将不同方法相结合应用于齿轮箱故障信号特征提取的优势,对大量文献的研究成果进行了归纳整理.综合分析发现:将多种方法结合应用于齿轮箱振动信号特征提取,可有效避免单一方法的局限性,充分发挥不同方法的优势.总结了在齿轮箱故障诊断领域中分别以频谱分析为基础和以非线性理论为基础的将不同信号处理方法结合应用于齿轮箱故障特征提取的现状,最后针对多种方法结合应用于齿轮箱故障诊断的发展趋势提出了建议. 相似文献
11.
铁磁性双层套管长期服役于恶劣的工作环境,极易出现腐蚀缺陷,定期为服役中的双层套管进行在线检测十分必要,而对管壁腐蚀缺陷位置的分类识别是管道定量检测与维修的前提和基础,实时准确的套管腐蚀缺陷分类识别能力是决定管道在线检测效率的重要因素。针对这一情况,将脉冲远场涡流和脉冲涡流技术相结合,提出了基于堆叠自编码器神经网络的分类方法。通过仿真和实验选取合适特征量作为输入层,实现了内管外壁腐蚀、外管内壁腐蚀和外管外壁腐蚀的分类,实验整体预判精度可达97.5%,结果表明该方法可对双层套管腐蚀缺陷缺陷实施高效、高精度分类识别。 相似文献
12.
13.
电力负荷聚类分析研究是负荷特性模拟、需求侧管理等应用的基础。针对负荷数据日趋多样性、随机性,传统K-means算法无法有效处理高维数据,且存在人工给定聚类数目K值及随机选取初始聚类中心易收敛至局部最优的问题,本文提出一种基于自编码器(Auto-Encoder,AE)降维的电力负荷聚类方法。首先利用自编码器网络对采集的负荷数据提取特征,降低数据维度,然后通过密度权值Canopy算法对降维后的数据预聚类,得到初始聚类中心和最优聚类数目K值,将预聚类结果结合K-means算法进行聚类。算例结果表明,该方法能够有效对负荷数据进行特征提取,并减少聚类过程中的复杂度,提高了聚类结果准确度和聚类效率。 相似文献
14.
从人体目标雷达回波数据中提取可分性较好的微动特征是实现目标分类的关键。针对传统谱图结构特征无法对体型相似的人体目标精细识别,提出了基于堆栈稀疏自编码器的人体身份认证方法。首先构造堆栈稀疏自编码器网络,利用人体微动数据进行无监督预训练,在不同层提取人体微动特征,然后将得到的特征输入softmax分类器进行有监督训练,用交叉验证调整网络参数,最后用训练好的网络进行人体目标分类。在不同人走路实测数据集上,3人平均识别率达到了83%,优于提取谱图结构特征分类的方法。 相似文献
15.
针对当前无监督学习的入侵检测算法准确度低、误报率高以及有监督学习算法所需训练样本标记成本高的问题,提出一种基于对抗性自编码器的入侵检测算法.这是一种半监督学习算法,仅需要训练数据集中少量标记数据进行训练,并在训练数据集中支持未标记数据,从而提高性能.首先,自编码器通过提取重要特征作为潜在变量来降低输入数据的维数;其次,... 相似文献
16.
针对极限学习机在高维度、含噪声数据集中需要大量隐含层节点来保证分类性能的问题,设计了镜像极限学习机.该算法使用伪逆法确定输入权值,随机生成输出权值和偏置,在对数据进行分类时,它仅需极少的隐含层节点.为了提升镜像极限学习机的分类性能和抗噪性,将它与去噪自编码器相结合.利用去噪自编码器对输入数据进行特征提取,并将提取到的特征作为镜像极限学习机的输入数据,再进行网络训练.在无噪和含噪声的MNIST,Fashion MNIST,Rectangles和Convex数据集中,将基于去噪自编码器的镜像极限学习机与ELM,PCA-ELM,SAA-2和DAE-ELM作对比实验,结果表明,基于去噪自编码器的镜像极限学习机的综合性能最优,用于分类的网络隐含层节点数最少. 相似文献
17.
提出了一种自编码器与PSO算法优化卷积神经网络结合的电力系统短期负荷预测模型。首先利用自编码器对相关变量数据进行处理,降低所需数据的噪声变量,提高预测效率;然后利用粒子群算法对卷积神经网络的权值和阈值进行优化,可有效提高预测模型的预测精度和预测速度。通过对实际电网的负荷数据进行仿真,验证了模型具有较高的预测精度。 相似文献
18.
在滚动轴承故障诊断过程中,时域振动信号容量大且易受噪声污染,难以建立准确的故障诊断模型。针对上述难题,本文采用无损约束降噪方法对稀疏自编码进行优化,提出了基于无损约束降噪稀疏自编码的滚动轴承故障诊断方法。该方法可直接作用于时域振动信号,消除对人工特征提取的依赖性,无需降噪预处理,降低了故障诊断模型建立的难度。为验证本方法的有效性,利用滚动轴承时域振动信号进行仿真实验,并对诊断过程中学习到的故障特征进行可视化分析。实验结果表明,本方法可以在噪声数据下建立有效的故障诊断模型,且比传统的栈式稀疏自编码诊断算法具有更强的噪声鲁棒性。 相似文献
19.
针对复杂工况下轴承载荷的时变非平稳性,文章提出一种基于天牛须搜索(beetle antennae search, BAS)算法优化堆栈稀疏自编码器的轴承故障诊断方法,以解决复杂工况下难以快速准确判断轴承故障类型的问题。首先,通过对轴承振动信号进行时域、频域特征提取和变分模态分解,得到其固有模态函数,提取其时域、频域和固有模态函数的44个特征构建数据集,作为机器学习诊断网络的输入;其次,通过稀疏自编码器二次特征提取获得更加典型的特征,同时引入BAS算法对堆栈稀疏自编码器的稀疏惩罚因子进行自适应选取以获得最优分类模型;最后,通过Softmax分类层实现对滚动轴承的故障诊断分类。试验结果表明,该方法不仅在平稳载荷下具有很好的轴承故障分类能力,而且在时变非平稳性载荷以及不同测试数据量下仍然具有较好的故障分类效果。 相似文献
20.
针对不同故障模式下航空变压整流器二极管故障特征相似程度高导致不易区分的问题,提出一种基于堆叠降噪自动编码器(stacked denoising auto encoder,SDAE)与粒子群优化支持向量机(partical swarm optimization support vector machine,PSOSVM)相结合的故障诊断方法.首先搭建航空变压整流器仿真模型,通过对不同故障模式进行仿真,获取故障数据;然后运用SDAE方法对高维故障信号进行故障特征提取,建立故障特征集;最后采用PSOSVM方法进行故障诊断,并且与常用的故障诊断方法进行对比分析.诊断结果表明SDAE-PSOSVM故障诊断方法准确性达到96%,可以对高维故障数据信号进行特征提取,提高不同故障模式之间的区分度. 相似文献