共查询到19条相似文献,搜索用时 66 毫秒
1.
一种基于多特征融合的粒子滤波目标跟踪算法 总被引:1,自引:0,他引:1
针对采用单一图像特征进行目标跟踪时鲁棒性不高的问题,提出一种基于多特征融合的目标跟踪算法.该方法利用颜色特征和纹理特征描述目标,并将二者融合于粒子滤波框架中,提高了目标跟踪的稳定性,同时也在一定程度上克服了目标跟踪中光照变化时跟踪效果较差等缺点.实验结果表明,该文算法不仅提高了目标跟踪精度,而且具有较强的鲁棒性. 相似文献
2.
针对单一特征目标跟踪导致多数跟踪算法鲁棒性差的原因,提出一种背景加权的多特征融合目标跟踪算法。在跟踪过程中对目标模型进行背景加权,同时利用空间直方图提取目标颜色的空间分布信息。在粒子滤波框架下将背景加权直方图和空间直方图相结合,并且引入特征不确定性度量,自适应调整不同特征对跟踪结果的贡献,有效地提高了算法的鲁棒性。实验结果表明:与传统融合算法相比,提出的算法具有更强的鲁棒性,同时提高了跟踪精度。该算法在目标表示和跟踪性能上都有很大的提高。 相似文献
3.
杨永超 《安庆师范学院学报(自然科学版)》2016,22(3)
针对单一目标特征在复杂场景下难以实现有效的跟踪问题,提出了一种边缘纹理与颜色特征相融合的新方法。将Sobel算子与局部二值模式算子相结合,得到一种新的边缘纹理SLBP(Sobel Local Binary Pattern)特征提取方法,并与HSV(Hue,Saturation,Value)颜色特征融合应用于粒子滤波框架的视频目标跟踪。实验结果表明:本文提出的SLBP+HSV特征融合方法能够克服视频中光照变化、目标遮挡等复杂背景影响的问题,提高跟踪的精确度。 相似文献
4.
基于多特征融合的目标跟踪算法 总被引:3,自引:0,他引:3
针对单一特征的目标跟踪算法鲁棒性较差的情况,利用目标的多种观测信息通过D-S证据理论进行融合跟踪.在粒子滤波的总体框架下,嵌入Mean-Shift算法产生更加逼近真实后验分布的粒子,同时采用颜色和运动边缘特征作为观测模型,有效地避免了单一颜色特征在光照突变、姿态变化以及背景相似情况下的跟踪稳定性较差的问题.实验表明,该... 相似文献
5.
6.
在多摄像机视频监控的框架下,基于信息融合技术策略,提出了一种用于移动目标跟踪的多级信息融合方法.对于每个单一摄像机采用多特征融合粒子滤波跟踪算法,该算法将目标颜色和边缘方向特征同时作为测量特征,并通过随机融合机制融合特征权重,得出最佳目标位置估计.在此基础上,将多个摄像机的跟踪结果相融合,融合方法主要是通过位置、大小和颜色匹配概率的联合进行目标之间的匹配度测量,并基于信任度级别及权重融合目标跟踪特征.仿真实验证明本方法能够有效消除目标跟踪过程中的重叠区域遮挡问题,在提高目标跟踪精度的同时,充分发挥了多摄像机多信息融合的优势,较好地描述了跟踪目标的状态. 相似文献
7.
《清华大学学报(自然科学版)》2010,50(10)
为实现非刚体目标精确跟踪,克服跟踪过程中目标形状变化和遮挡带来的困难,提出了一种基于多线索融合的跟踪算法。首先,对目标样本集做PCA(principal component analysis)降维,得到目标形状信息在低维空间的表达;然后,把目标形状特征、颜色统计特征与图像边缘特征以水平集能量函数的形式嵌入到粒子滤波观测模型中;最后,对3种特征采用不同生存周期的更新策略以提高跟踪算法的鲁棒性。实验结果表明:该算法可以在非刚体目标形状变化以及被遮挡的情况下,对目标精确跟踪。 相似文献
8.
针对海面光照变化、水花遮挡、水面倒影等耦合作用引起的无人船视觉目标跟踪漂移问题,提出一种基于多特征融合的尺度自适应相关滤波跟踪算法。通过多特征融合,增强了水面目标特征表达,避免了目标跟踪漂移。为减少环境干扰对跟踪目标外观描述的影响,设计尺度自适应跟踪滤波器,提升目标跟踪鲁棒性能。采用本文算法对多个代表性海上视频数据集进行验证,并与典型目标跟踪算法进行比较。结果表明,相较基于单一CN特征的跟踪算法,本文算法的平均重叠率提升23.63%、平均中心误差减少53.79个像素点。本文算法适用于处理由于海面环境剧烈变化、目标尺度变化导致的跟踪漂移问题,可为无人船作业自主性提供重要智能感知技术支持。 相似文献
9.
基于多特征融合的尺度自适应KCF目标跟踪算法 总被引:2,自引:0,他引:2
首先,对核相关滤波(KCF)目标跟踪算法进行了详细推导;然后,针对KCF算法提取单一特征,不能很好地表达目标的外观模型,提出将多种特征融合的方法,增加外观模型的可区分性.同时针对KCF算法不能自适应尺度变化的问题,引入一种尺度自适应变化方法.还对于KCF算法的固定更新率在目标被遮挡的情况下会学习到错误信息的问题,提出一种在线模型更新因子的方法;最后,通过实验对比结果表明,本文提出的算法跟踪精度更高,且对目标尺度发生较大变化和遮挡情况下的跟踪具有较强的鲁棒性. 相似文献
10.
为实时智能监控变电站安全生产区域内的移动目标,克服现有视频系统人工切换图像和肉眼判断所造成的漏检和滞后问题,对变电站内运动目标的自动检测与识别跟踪技术进行了研究;基于背景差分法实现了人物动态目标检测,提出了基于颜色直方图的粒子滤波人物动态目标跟踪方法;通过提取目标颜色特征,建立目标状态模型和系统模型,进而准确定位目标;研发了变电站安全事件视频自动识别跟踪系统.系统应用结果表明:算法检测与跟踪的时间性能良好,能够快速识别目标,并准确跟踪目标运动轨迹,有效提升了全天候智能监控站内的安全生产能力. 相似文献
11.
为了提高目标跟踪算法在复杂环境下的稳健性,提出了一种将基于颜色特征的均值漂移算法和SURF(Speeded UpRobust Features)特征匹配算法相融合的目标跟踪方法。该算法首先采用颜色特征和SURF特征分别描述目标模板,利用均值漂移算法快速估计目标局部最优解。但仅采用单一颜色特征来估计目标位置,跟踪误差逐渐累积;采用SURF算法精确估算目标位置和尺度,及时修正累积误差。最后根据相似性度量Bhattacharyya系数选择较优的结果作为当前帧跟踪结果,且更新目标模板。实验结果表明,算法在目标发生较大形变、尺度变化、周边具有表观相似目标时具有很强的稳健性,且满足跟踪实时性要求。 相似文献
12.
13.
针对红外图像序列的特点,提出一种动态融合的目标识别与跟踪算法。由图像序列中的运动信息对目标进行提取,得到自适应波门所需的起始波门和灰度双阈值,以及匹配算法所需的基准模板,其后的跟踪, 融各算法为一体,分时机、分场合地给予灵活运用。最后,以实测的红外图像序列对文中提出的算法进行仿真实验,结果表明该融合算法的可行性与有效性。 相似文献
14.
为了完成复杂场景中的长期视觉跟踪任务,解决尺度变化、外观变化和跟踪失败等问题,提出了一种双模型融合的长期跟踪算法.首先,将稀疏核相关滤波模型和颜色模型得到的跟踪响应进行自适应融合,构成更具鲁棒性的跟踪结果;然后,利用响应最大值来判断目标跟踪是否成功,并通过随机抽样学习用于在跟踪失败情况下重新检测目标的CUR滤波器,实现长期跟踪.在大规模基准数据集上的实验结果表明,算法在效率、准确性和鲁棒性方面优于现有相关跟踪算法. 相似文献
15.
16.
针对图像制导中信息的模糊性和不确定性问题,将多源信息融合技术应用于红外/可见光双模复合成像制导。采用方差比测量的方法将特征选择问题转化为一个两类判别问题,并引入自适应特征选择机制;通过计算目标和背景间不同特征分布直方图对应的似然比,在高维特征空间中选择4个判别性较好的特征区分目标和背景,根据bahattacharyya距离建立跟踪所需的观测似然函数,在粒子滤波的框架下实现了算法对单模序列图像中目标的跟踪;引入跟踪性能品质度量因子和加权融合策略衡量多信源下对目标的跟踪性能,实现对双模序列图像中目标的稳健跟踪,解决了单一信源在特定因素下跟踪性能不理想的缺陷,提高了算法性能。仿真实验结果验证了算法的有效性。 相似文献
17.
针对单特征目标跟踪算法的鲁棒性较差以及不能充分利用最新的量测信息等问题,提出了一种基于多特征融合的改进UPF(Unscented Particle Filter)跟踪算法.基于比例最小偏度单形采样策略的UKF(Unscented Kalman Filter)算法和IKF(Iterated Kalman Filter)算法对粒子滤波算法进行改进,并在改进的算法框架下,采用不确定性度量方法融合目标的颜色和纹理特征,对目标进行跟踪.仿真实验表明,改进算法提高了跟踪精度,对复杂背景下的目标进行跟踪有较好的效果,并能有效跟踪被遮挡的目标. 相似文献
18.
应用基于ARMA模型的现代时间序列分析方法,和应用基于Riccati方程的经典Kalman滤波方法,对带位置和速度观测的两传感器系统,在线性最小方差信息融合准则下,分别提出了按矩阵加权、对角阵加权和标量加权的三种信息融合Kalman跟踪滤波器,其中,按标量加权可明显减少计算负担,便于实时应用。一个仿真例子说明了两种方法引出相同的结果,但构造ARMA新息模型时必须进行左素分解,且说明了三种加权融合滤波器的精度无显著差异。 相似文献
19.
核相关跟踪通过相关滤波定位目标在图像中的位置,这种生成式滤波器方法容易受到与目标相似背景的干扰,导致跟踪失败。针对这一问题,通过最大分类间隔增强相关滤波器的判别性,将相似背景作为负样本对模型进行更新来提高跟踪的鲁棒性。该算法首先建立了基于最大间隔相关滤波器的目标跟踪模型,通过分类判别出与目标相似的背景;然后在跟踪过程中,将获得的相似背景作为负样本并对跟踪模型进行在线更新,适应目标在运动中的各种变化,最终实现对目标的鲁棒跟踪。在OTB2013和VOT2014数据库中选取了17个典型的图像序列进行实验,同时与6种相关跟踪算法的结果进行比较。实验结果表明,该算法在精确度和成功率这2个性能指标上, 相比于次优算法,在性能上分别提升8%和2%。 不仅取得了最好的跟踪效果。而且跟踪实时性较好。 相似文献