首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
应用卷积神经网络将肺结节从含有背景、噪声的胸腔区域里检测并识别出来。首先,对图像进行预处理,获得肺实质图像。然后,应用Faster R-CNN多特征融合算法检测肺结节候选区域,再利用多角度特征融合方法滤除假阳性结节。接着,通过数据增强法、残差学习法、优化初始参数等对卷积神经网络的性能进行优化。最后,应用迁移学习方法对数据集进行训练,得出最终的检测结果。抽取LIDC数据集中含有肺结节图像数据,检测并识别肺结节的准确率达到98. 1%。实验结果表明,该算法优于其他3类算法,实现了肺结节的精确检测和识别,在保证检测和识别出正确结节的前提下,降低了过拟合率及训练时间,提高了算法效率,研究成果为早期肺癌的诊断提供参考依据。  相似文献   

2.
3.
为了进一步提高基于深度神经网络的语音增强方法的性能,针对单独使用卷积神经网络难以对含噪语音中的长期依赖关系进行建模的问题,提出一种基于卷积门控循环神经网络的语音增强方法.该方法首先采用卷积神经网络提取含噪语音中的局部特征,然后采用门控循环神经网络将含噪语音中不同时间段的局部特征进行关联,通过结合两种网络的不同特性,在语音增强中更好地利用含噪语音中的上下文信息.实验结果表明:该方法能够有效提高未知噪声条件下的语音增强性能,增强后的语音具有更好的语音质量和可懂度.  相似文献   

4.
垃圾分类已经成为当前社会生活的新风尚.本论述针对当前垃圾分类工作环境差和容易分类出错的问题,研究基于深度学习的垃圾自动分类方法,并设计基于深度残差卷积神经网络ResNet50的垃圾识别方法.为避免垃圾图像数据集中训练数据量的不足,采用对使用ImageNet训练好的ResNet50模型进行迁移微调的方法来优化网络参数.在...  相似文献   

5.
近年来,大多数火灾自动报警系统都是通过检测感温、感烟和感光等传感器的方法进行检测,只能针对单一特征信息进行判断识别,受到外界空间、环境或人为因素的影响.卷积神经网络(CNN)以其高准确率的识别率在广泛应用成为一个活跃的研究课题.然而如何可靠、有效地解决火焰检测问题仍然是实践中一个具有挑战性的问题.本文提出了一种新的基于...  相似文献   

6.
农产品检测技术一直以来都是农业领域研究的热点问题,但以往的识别的错误率都居高不下,该文采用了基于有深度学习机制的卷积神经网络方法来提高识别率.首先对采集到的图像进行预处理得到规范化的二值化图像,再利用Matlab软件进行神经网络的建模,利用其网络自学习能力进行训练与测试,通过仿真验证卷积神经网络对辣椒图像的精确识别率.并与传统BP神经网络进行比较,表明其具有很好的鲁棒性和泛化能力.  相似文献   

7.
为避免在处理掌纹识别时人工提取掌纹特征,提出使用卷积神经网络(CNN)来处理掌纹识别问题。首先根据掌纹的几何形状特点进行预处理,切割出掌纹的感兴趣区域(ROI);然后将感兴趣区域进行归一化并组成一个二维矩阵作为卷积神经网络的输入;再使用批量随机梯度下降算法对网络进行训练,得到最优的网络参数;最后对测试掌纹进行分类识别,分类器使用Softmax。应用于香港理工大学掌纹数据库(v2)的掌纹识别率达到99.15%,单张掌纹的识别时间小于0.01 s,验证了方法的有效性。  相似文献   

8.
罗辉  何海清  徐献聪 《江西科学》2021,39(1):134-137
基于传统道路损伤检测方法主要通过人工选取特征识别道路损伤,致使检测过程中抗干扰性较差,进而制约道路损伤识别精度的提高.针对这一问题,提出一种基于深度卷积神经网络的道路损伤检测方法.通过引入深度学习算法,利用迁移学习策略,构建稳健的非线性道路损伤识别模型;结合真彩色的道路图像,利用多层卷积神经网络抽取局部损伤区域的高级语义特征,实现复杂背景变化下的道路损伤智能检测.实验结果表明,提出的方法可准确识别道路损伤图像,相比常用方法能显著提高识别准确率.  相似文献   

9.
当前的图像特征识别大多采用的是传统的机器学习方法与卷积神经网络方法。传统的机器学习对图像识别的研究,特征提取多是通过人工完成,泛化能力不够强。最早的卷积神经网络也存在诸多缺陷,如硬件要求高,需要的训练样本量大,训练时间长。针对以上问题,提出了一种改进的神经网络模型,在LeNet-5模型的基础上并在保证识别率的情况下,简化网络结构,提高训练速度。将改进的网络结构在MINIST字符库上进行识别实验,分析网络结构在不同参量中的识别能力,并与传统算法进行对比分析。结果表明提出的改进结构在当前识别正确率上,明显高于传统的识别算法,为当前的图像识别提供新的参考。  相似文献   

10.
钳剪工具痕迹识别对法庭审判和侦查破案有着重要的参考价值,是物证分析识别的重要组成部分。针对该类工具种类繁多,现场痕迹复杂多样的特点,本文提出了一种基于卷积神经网络识别的钳剪痕迹分析方法。使用断线钳、线缆钳等10类常用钳剪工具,采集制作了300枚钳剪样本,在此基础上对特征区域进行录制,共200余段视频,提取钳剪痕迹特征图像共120 000张。提出TpsNet,以钳剪断头的侧面图片为识别分类对象,通过图片的分类实现对钳剪痕迹的分析识别。结果表明,TpsNet模型在钳剪痕迹数据集上的分类精度达到97.56 %,可作为钳剪痕迹分析与识别的重要依据。  相似文献   

11.
作为深度学习的一种有效算法,深度卷积网络已成功应用在处理图像、视频和音频等领域.通过建立一卷积神经网络模型并应用于网络入侵检测,选取的卷积核与数据进行卷积操作提取特征的局部相关性从而提高特征提取的准确度.采集到的网络数据通过多层"卷积层-下采样层"的处理对网络中正常行为和异常行为的特征进行深度刻画,最后通过多层感知机进行正确分类.KDD 99数据集上的实验表明,文中提出的卷积神经网络模型与经典BP神经网络、SVM算法等相比,有效提高了入侵检测识别的分类准确性.   相似文献   

12.
针对牲畜面部识别在养殖行业广泛需求的问题, 提出一种基于卷积神经网络的猪脸特征点检测方法, 解决了猪脸特征点难检测的问题. 首先, 采集猪面部数据并进行特征点标注, 使用新的采集方法以解决猪口部通常不可见的问题; 其次, 对猪脸数据和人脸数据进行结构计算, 匹配相似度较高的猪脸和人脸, 构建猪脸人脸匹配数据集; 再次, 利用匹配数据集训练TPS(thin plate spline)形变卷积神经网络, 得到形变后的猪脸数据集以适配人脸特征点检测模型; 最后, 使用形变猪脸数据集对人脸特征点检测神经网络模型进行微调, 得到猪脸特征点检测模型. 实验结果表明, 用该方法进行猪脸特征点检测, 错误率仅为5.60%.  相似文献   

13.
针对疲劳驾驶检测问题,提出一种以softmax损失与中心损失相结合的深度卷积神经网络算法。首先,利用含有方向的梯度直方图(histogram of oriented gridients,HOG)和级联分类器(support vector machine,SVM)算法的Dlib库中预训练的人脸检测器,来检测驾驶员的脸部区域。其次,使用级联回归(ensemble of regression trees,ERT)算法实现脸部68个关键点标定及眼睛和嘴巴的定位。最后,为了优化softmax损失在深度卷积网络分类中出现的类内间距大的问题,加入中心损失函数,提高类间差异性、类内紧密性以及驾驶员脸部疲劳状态识别准确率。在自建测试集和YawDD哈欠数据集中的实验结果显示,该方法能够准确地识别检测驾驶员疲劳表情,平均识别准确率达到98.81%。与传统的疲劳驾驶检测识别方法相比,该方法可以自动进行疲劳特征提取,并且训练准确率、检测识别率及鲁棒性得到提高;与未改进的深度卷积网络相比,检测识别的概率平均提高了约5.09%。  相似文献   

14.
针对轴承故障在实际环境中存在负载变化导致故障难以诊断的问题,提出一种基于一维卷积神经网络的变负载适应轴承故障诊断模型,卷积结构使用小卷积核卷积层堆叠的形式,训练时对输入层进行均匀分布失活率的随机失活,以提高网络的变负载适应能力,且采用全局平均池化降低模型计算量和减轻过拟合程度;在实验验证阶段,提出以两种近邻负载条件的轴承数据构成变负载数据集,充分验证轴承故障诊断的变负载适应性。实验结果表明:本文模型在各测试集均能达到96%以上的准确率且平均准确率达到98.36%,能够在变负载环境下实现准确、稳定的轴承故障诊断,具有良好的泛化能力。  相似文献   

15.
针对现有均匀线阵远场窄带非相干多目标估计算法对低信噪比、少快拍情况适应性差、运算复杂度高,以及现有深度学习方法难以有效提取数据复值特征的问题,提出基于深度卷积神经网络的波达方向估计方法。该方法将波达方向估计问题转换为阵列输出协方差矩阵到目标到达角度的逆映射问题,利用阵列输出协方差矩阵的Hermitian特性,提取其上三角阵的实部、虚部及相位特征,构造网络的输入数据,搭建包含三维卷积层的深度卷积神经网络用来提取数据特征,网络的标签对应目标的到达角度,从而实现多个信源的波达方向估计。试验仿真表明:该方法可以充分提取空间特征,提高波达方向估计精度并降低算法复杂度。所提方法在低信噪比、少快拍数的情况下,其估计精度明显优于MUSIC、ESPRIT以及ML算法。  相似文献   

16.
针对驾驶员分心驾驶行为检测,设计一种级联卷积神经网络检测框架。检测框架由第一级分心行为预筛选卷积网络和第二级分心行为精确检测卷积网络两个全卷积网络级联构成。预筛选卷积网络是一个轻量级的图像分类网络,负责对原始数据进行快速筛选,其网络层数少、训练速度快,结构特征冗余较少,能够减少后续网络的计算负担;分心行为精确检测卷积网络采用VGG(Visual geometry group)模型特征提取的深度迁移学习检测算法网络,通过迁移学习重新训练分类器和部分卷积层。提出的级联神经网络最终可以实现9种驾驶员分心驾驶行为的准确识别检测。实验结果表明,相比主流单模型检测方法,在保证算法效率的同时准确率均有明显提升,准确率达到93.3%,有效降低了误检率。该方法具有较好的鲁棒性和泛化能力。  相似文献   

17.
为解决精细车型识别中特征不具有代表性,且识别准确率低的问题,提出了基于多尺度跃层卷积神经网络(CNN)的车型识别方法。通过多个不同尺度的跃层卷积神经网络,提取适用于精细车型识别的低层局部特征和高层全局特征,并分别训练Softmax分类器。利用自适应方式融合方法,将多个单一尺度跃层卷积神经网络的识别结果进行融合,调整不同网络对识别结果的贡献。实验中车型识别准确率达到97.59%。实验结果表明多尺度跃层卷积神经网络适用于精细的车型识别,并能提高识别的准确率。  相似文献   

18.
于微波  周旺  杨宏韬  李昱 《科学技术与工程》2022,22(32):14282-14288
针对传统姿态识别算法识别精度不高,通用性不强,易受环境因素的影响,且需要对检测图像进行复杂的图像预处理操作的问题。基于卷积神经网络的特征提取能力和识别分类能力,提出一种基于卷积神经网络的发动机主轴承盖姿态识别算法,所提算法去除了传统复杂的预处理操作,通过提取轴承盖4个面的特征,对轴承盖4个面进行识别。实验结果表明:所提算法不仅可以正确识别发动机主轴承盖的4个面,而且平均识别精度为100%,平均识别时间为3.80 s,具有识别精度高,识别时间短,抗干扰能力强的特点。  相似文献   

19.
李雅雯  刘彩云  熊杰  刘倩 《科学技术与工程》2022,22(31):13653-13661
重力异常反演是地球勘探中常用的方法,它是通过地表观测重力异常推断地下介质的密度分布。针对传统反演方法存在的多解性、初始模型依赖和计算时间较长等问题,提出一种基于卷积神经网络(convolutional neural network, CNN)的重力异常反演方法,该方法首先通过大量正演计算获得训练数据集;然后采用该数据集训练CNN网络,使其建立从地表观测重力异常到地下密度模型之间的映射关系;最后将重力异常数据输入到训练好的卷积神经网络,得到对应的地下密度模型。实验结果表明,该方法能快速、准确的反演出地下重力异常体的密度、位置和形状,具有较强的泛化能力,能有效解决重力异常反演问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号