首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
环境影响评价分析是每个核电站在建设、审批之前必须要经过的步骤,而计算核电站的堆芯放射性总量是环境影响评价的前提,也是堆内核素行为研究的基础。本期19~23页钱郑诚等的文章。高温气冷堆示范电站堆芯放射性总量计算方法”首先对堆芯放射性总量的计算程序KORIGEN进行了优化编译,实现了模拟全堆芯实际中子能谱变化的功能,并且对数据库做了半衰期数据的更新修正;  相似文献   

2.
球床高温气冷堆闭式循环特性   总被引:2,自引:0,他引:2  
从提高天然铀利用率和改进废物管理方面考虑,研究球床高温气冷堆乏燃料中铀钚的再利用和不同闭式燃料循环的特性。在250MW热功率球床模块式高温气冷堆示范电站铀钚循环的乏燃料中提取铀和钚为核燃料,设计了PuO2和混合氧化物(MOX)燃料元件,将新设计的燃料元件重新装入与示范电站有同样结构和尺寸的堆芯,分别形成纯钚燃料循环和MOX燃料循环。还研究了基于轻水堆级钚的燃料循环。采用了高温气冷堆物理设计程序VSOP,研究了高温气冷堆不同闭式循环的燃料利用和超铀元素焚烧特性。不同闭式循环钚消耗率分别为50%、46%和71%,天然铀的电利用率分别提高了6%、8%和20%。结果表明:高温气冷堆闭式燃料循环能有效焚烧钚同位素,适度提高天然铀的利用率。  相似文献   

3.
球床式高温气冷堆(HTR)球流运动存在混流的现象,它会对功率峰值等堆芯参数发生影响。该文开发了专门的混流模拟方法,在原球床高温气冷堆分析程序VSOP的基础上开发了新的程序系统MFVSOP。新程序通过设定不同的混流比例可模拟球床式高温气冷堆堆芯每个流道与相邻流道的混流,实现其与堆芯物理、热工、燃耗等计算耦合并有能力分析球流混流运动对堆芯燃耗分布、功率分布等参数的影响。对于研究球床式高温气冷堆的运行特性及不确定性分析提供了有力的计算工具。  相似文献   

4.
为了验证球床式高温气冷堆初始临界的计算方法,用法国M on te C arlo程序TR IPOL I-4.3对燃料球内的包覆燃料颗粒以及堆芯内不同的球分布进行了模拟。考虑了燃料球的双重非均匀性、不同区域内球的布置以及其在堆芯的体积填充率等。计算了俄罗斯的球床式高温气冷堆临界试验装置A STRA的初始临界。与实验结果比较,计算得到的临界实验高度误差为0.6%,堆芯有效增值因子keff误差为0.1%。TR IPOL I-4.3程序是球床式高温气冷堆初始临界计算的有效工具。  相似文献   

5.
随着反应堆出口温度的提高,高效的动力转换技术已经成为(超)高温气冷堆的一个趋势。该文在HTR-10、HTR-10GT和HTR-PM研究的基础上,针对更高的堆芯出口温度,对高温气冷堆氦气透平循环的热力学参数进行分析、优化和设计。通过建立高温气冷堆的数学模型和优化模型,结合更符合工程经验的约束条件,确定了高温气冷堆氦气透平循环的2个设计工况点:1)接近目前工程经验的工况点,堆芯出口温度为850℃,继承HTR-10GT氦气压气机和透平的设计经验,循环压比为2.47,循环效率为47.60%;2)略带前瞻性的工况点,堆芯出口温度为900℃,堆芯入口温度为550℃,压气机压比为2.75,此时循环效率为48.92%。该文还基于这2个工况点对高温气冷堆氦气透平循环参数进行设计,将会对未来开发高温气冷堆闭式Brayton循环提供帮助。  相似文献   

6.
我校核能技术研究所王大中同志在联邦德国进修期间,就模块式高温气冷新堆芯设计取得一项发明专利。 高温气冷堆是一种能提供高温工艺热、安全性能好、核燃料利用率高的先进堆型。目前正在美、日、联邦德国、苏等国进行研究和发展。近年来联邦德国发展了一种模块式高温气冷堆,它  相似文献   

7.
为了满足高温气冷堆核电站计算机化规程流程验证的需要,针对高温气冷堆核电站"多个核蒸汽供应系统模块带一台汽轮机"的结构和运行特点,该文利用改进的着色Petri网建模方法,建立了常规规程执行流程模型和有中断的变体规程执行流程模型,并基于模型对计算机化规程执行进行了形式化验证。对一个典型的高温气冷堆核电站异常事件处理规程的案例进行分析,结果表明:基于改进着色Petri网的规程建模和验证方法有效,为高温气冷堆核电站计算机化运行规程系统的研制提供了重要的理论依据。  相似文献   

8.
HTR-10平衡态运行方式研究   总被引:1,自引:0,他引:1  
为了使10MW高温气冷实验堆(HTR-10)运行在安全、经济的状态下,研究了5次通过、8次通过和10次通过三种运行方式下平衡态HTR-10堆芯的特性,利用高温气冷堆物理设计程序 VSOP对所选方案进行分析计算。结论表明:在最大燃耗不超过101 GWd/t的条件下,增大燃料球通过堆芯的次数并缩短每次通过堆芯所需的时间,将会使乏燃料平均燃耗提高,使HTR-10的燃料得到更有效的利用。  相似文献   

9.
在高温气冷堆(high-temperature gas-cooled reactor, HTGR)堆芯球床中,燃料球间的辐射换热是重要的传热模式,与堆芯固有安全特性密切相关。该文利用机器学习方法提出了球床颗粒间辐射角系数智能预测方案,其中基础计算模型基于角系数显式解析表达式,合理描述了球床热辐射特性随球心距变化规律和周围颗粒球平均阻挡作用,用于快速计算球床堆中辐射角系数的核心主导部分。利用高温气冷堆示范项目(HTR-PM)球床堆积结构和光线追踪方法,建立了高温堆球床高精度角系数大数据集,共包含1.66×107条角系数工况,覆盖了球床各种局部结构。利用大数据训练后的梯度提升决策树模型有效提升了角系数预测精度,综合基础计算模型后角系数回归系数超过0.999。该文成果为高温气冷堆球流传热研究、堆芯优化和热工流体分析提供了高效的辐射传热计算方法。  相似文献   

10.
堆芯球床等效导热系数是直接影响高温气冷堆燃料最高温度和堆芯温度分布的关键参数;在余热导出过程中起主导作用。开展球床等效导热系数的实验研究对于反应堆分析程序的完善、研究提高高温气冷堆单堆功率的可能性、以及工程的安全分析具有重要的意义。综述了国内外球床等效导热系数测量的研究现状,给出了清华大学HTR-PM三维堆芯球床等效导热系数测量实验最新成果,总结了各国实验的研究手段,对研究方向进行了讨论。  相似文献   

11.
 AP1000作为第三代革新型核电厂,广泛采用了非能动安全设计,来提高系统的安全性和经济性。其中,非能动余热排出系统(PRHR)用于应对正常余热排出路径失效的事故。本文采用机理性分析程序建立了包括主冷却剂系统(RCS)、专设安全设施(ESF)、以及简化的二回路系统的AP1000核电厂模型,对AP1000核电厂丧失正常给水事故进程进行了模拟计算。着重分析了非能动余热排出系统在丧失正常给水事故工况中的瞬态响应、热工水力行为及其冷却能力,并将PRHR与内置换料水箱(IRWST)的换热功率与堆芯衰变热功率进行了比较。研究表明,在丧失正常给水事故中,PRHR的热移出功率最终能够与堆芯的衰变功率相匹配,PRHR热交换器(PRHR HX)有能力带走衰变热,将反应堆主系统维持在安全停堆的状态。  相似文献   

12.
During the simulation of AP1000 nuclear power plant,the values of input parameters, core nodalization methods and calculation models, may have important influence on the code outputs. Therefore, it is necessary to identify and evaluate the influence of these parameters and modeling approaches quantitatively. Based on the best estimate thermal-hydraulic system code RELAP5,sensitivity analyses have been performed on core partition methods,parameters and models in AP1000 nuclear power plant,such as the core channel number,pressurizer node number,and feedwater temperature. The results show that code channel number,code channel node number, and the pressurizer node number have apparent influences on the coolant temperature variation and pressure drop in the reactor. The feedwater temperature is a sensitive factor to the steam generator( SG) outlet temperature and the SG outlet pressure. In addition,the influence of the cross-flow model on coolant temperature variation and pressure drop through the reactor is insignificant,both in steady state and loss of power transient. Furthermore, some suitable parameters and modes also have been put forward for the nuclear system simulation.  相似文献   

13.
 非能动余热排出系统是球床模块式高温气冷堆(HTR-PM)的重要安全系统。由于非能动余热排出系统与堆芯主回路之间通过辐射换热耦合在一起,为了分析事故工况下非能动余热排出系统的运行特性,提出了用区域重叠分解方法实现非能动余热排出系统与主回路系统的耦合计算。基于此方法开发了耦合计算分析工具TINTE-RHRS,建立了多回路系统模型。应用TINTE-RHRS程序模拟了失冷不失压事故下HTR-PM余热排出系统的热工水力特性,计算结果验证了堆芯主回路与余热排出系统耦合计算的必要性,分析了事故工况下投入运行列数和环境温度等对系统运行特性的影响。  相似文献   

14.
目前针对陆地核电站严重事故开展的源项分析不完全适用于浮动式核电站。以浮动核电站严重事故为研究领域,基于对国内外核电站、研究堆、船用堆源项分析方法和后果评价方法的相关研究,根据浮动核电站的特点,确定了严重事故源项分析计算软件和计算方法,构建出源项分析技术路线图,从而建立了基于浮动核电站严重事故的“MELCOR耦合FLUENT-MACCS”源项评估技术体系。为浮动式核电站的安全运行、安全审评及环境评价提供放射性源项方面的数据支持,为核应急决策提供进一步的理论基础。  相似文献   

15.
采用正在三门建造的AP1000核电厂堆芯参数,使用MCNP5程序建立AP1000堆芯数学模型。考虑了燃料棒、黑棒与灰棒7种不同排布方式,分3种情况通过调节黑棒和灰棒在堆芯中的深度来研究有效增值因数Keff值的变化情况。模拟结果表明:随着黑棒和灰棒在反应堆堆芯中的插入,Keff值在1.44—1.22之间变化。为了验证其合理性,并用1 000×10-6(ppm)的硼酸溶液进行了化学补偿模拟试验,计算得Keff值在1.17—1.07之间,基本能够满足降低过剩反应性的要求。  相似文献   

16.
核电站非能动余热排出系统误开事故仿真研究   总被引:1,自引:0,他引:1  
针对非能动余热排出系统在安全壳内的布置方式及运行原理,如果非能动余热排出系统(PRHR:passive residual heat removal)在反应堆正常运行时投入,其效果相当于产生堆芯冷水事故,威胁到堆芯的安全.应用Topmeret、THEATRe建模软件对AP1000非能动余热排出系统误开事故进行仿真研究,分析在此事故下堆芯的安全性.结果表明:在非能动余热排出系统误开的事故中,堆芯的压力、温度及燃料表面温度变化均小于安全域值.  相似文献   

17.
 具有长寿命、非能动安全的小型核电站是核电发展的一个重要方向。本研究设计了一个小型核电站堆芯方案。该方案为池式钠冷快堆,采用移动反射层和堆内固定吸收体实现较长的堆芯寿期。进一步计算表明,该堆芯方案的寿期可达30年,功率分布合理,各种反应性系数为负值,控制方式的价值足够,满足设计要求。  相似文献   

18.
对核电站典型CPR1000堆型反应堆厂房应用隔震技术进行了系统的研究.针对反应堆底部的圆形筏基,进行了隔震支座的布置与选型.基于时程分析法,研究了核电站基础隔震效果,并建立了结构内部设备层的楼层反应谱.此外,文章研究了地震波加速度峰值、设备层所处标高及设备阻尼比对楼层反应谱的影响.研究结果表明,应用隔震技术后大大提高了核电站反应堆厂房的抗震安全储备.  相似文献   

19.
基于微机仿真压水堆核电站堆芯物理数学模型的建立   总被引:1,自引:1,他引:0  
阐述了压水堆核电站堆芯的模型化,提出了适用于微机仿真的核电站堆芯的 物理数学模型。文章将核电站堆芯分为四大块分别建立模型(临界堆中子动力学模 块、中毒效应堆中子动力学模块、温度效应堆中子动力学模块和燃料模块),应用该模型建立传递函数,为微机仿真奠定基础。  相似文献   

20.
粗网节块内功率的重构   总被引:2,自引:0,他引:2  
粗网节块程序如NGFM、SIMULATE等只能给出平均功率。而反应堆设计中更关心的是堆芯内燃料元件的功率分布。本文讨论了获得堆内元件功率分布的重构方法。双二次多项式用于快群中子通量展开,与双曲函数项结合的双二次多项式用于热群中子通量密度展开。研究了21项和13项展开法,并与CITATION细网格计算进行比较。结果表明,本文中研制的21项方法程序RECON比SIMULATE-3NEMO程序中所用的13项方法精确得多,在外围区域更明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号