共查询到17条相似文献,搜索用时 74 毫秒
1.
外转子轮毂电机电磁场-温度场的耦合求解分析 总被引:2,自引:0,他引:2
采用有限元法对额定功率为8.5,kW的外转子永磁同步轮毂电机进行了电磁场-温度场的耦合仿真计算,研究了电机的发热以及电机内温度场分布情况,并对电机槽绝缘厚度和定子轭高度对电机温度场变化的影响做了定量分析.结果表明:当电机槽绝缘厚度降低到0.20,mm、定子轭高度增加5,mm时,电机温升问题得到了很好的改善,符合绝缘条件的要求. 相似文献
2.
以两后轮轮毂电机驱动电动汽车为研究对象,考虑车辆动力学纵向、横向和垂向的主要耦合因素,建立了整车16自由度非线性耦合动力学模型;并基于Adams/Car对模型的正确性进行了验证。在此基础上,以侧向加速度、横摆角速度、侧倾角、俯仰角、垂向加速度及轮毂电机定转子间的相对位移为评价指标,对前后悬架刚度、车身与电机质量比、定转子质量比、轴承与轮胎刚度比对动力学评价指标的影响进行分析。在分析各项系统参数对动力学评价指标影响的基础上,采用扰动法对各项系统参数进行灵敏度分析。结果表明,对侧向加速度和横摆角速度影响最大的均为定转子质量比,灵敏度分别为4×10-3和1.21×10-2;前悬架刚度对侧倾角和垂向加速度的影响最大,灵敏度分别为2.69×10-2和2.06×10-2;后悬架刚度对俯仰角的影响最大,灵敏度为2.9×10-3;定转子质量比对两轮毂电机定转子间的相对位移最为敏感,灵敏度分别为9.550 2×10-7和1.007 3×10-6。为后续轮毂电机驱动电动汽车结构参数优化设计及动力学控制的进一步研究奠定了理论基础。 相似文献
3.
靳燕平 《科技情报开发与经济》1998,8(6):45-47
运用磁网络法,进行了单边直线感应电动机的性能分析。提出了此种电机的磁网络模型,由电磁场方程导出了磁网络的参数,从而考虑了直线电机边端效应、绕组不对称分布等结构特点。场路耦合及机电耦合法的运用,使文中提供的分析模型更接近实际情况,适合于动态特性的分析 相似文献
4.
电动车用轮毂电机受路面激励和车重的双重作用,定转子相对偏心进而产生不平衡磁拉力,其垂向分量与车辆悬架系统的垂向振动相耦合,影响电动汽车的平顺性、舒适性等性能。针对这一机电耦合问题,以一台永磁式轮毂电机为研究对象,利用磁场叠加法获得负载气隙磁密分布,引入复数相对磁导和偏心磁导修正系数,建立考虑定子开槽效应的电机偏心磁场和不平衡磁拉力解析模型,并通过有限元仿真和样机试验验证了解析模型的有效性。根据悬架系统的垂向振动与电机偏心不平衡磁拉力的实时耦合关系,利用拉格朗日法求解车辆动力学方程,建立1/4车身垂向耦合振动模型。以轮毂电机定子垂向振动加速度、车身垂向振动加速度、悬架动挠度和轮胎动载荷为主要指标,研究机电耦合效应对车辆垂向动力学特性的影响,揭示不平衡磁拉力输出特性与车辆动力学响应之间的机电耦合机理。研究结果表明,机电耦合效应使电动汽车的平顺性、操稳性和安全性等性能总体下降。 相似文献
5.
建立了四轮轮毂电机驱动电动车的仿真模型,并在考虑前端进气,车轮旋转以及地面效应影响情况下,得到了最接近真实情况下电动车行驶时的外流场及轮边流场。对轮边驱动结构给流场带来的影响以及轮毂电机通风散热条件进行了分析。所得结果对轮边驱动电动车空气动力学性能优化以及轮边系统热管理提供了重要依据。 相似文献
6.
通过分析高速永磁电机的特点与关键技术,并在此基础上进行了一台60 000 r/min,100 kW的高速永磁电机的定、转子结构设计,提出了一种新的既有利于降低转子表面电磁损耗又有利于电机通风散热的定子结构和一种可满足高速电机机械和电磁性能要求而且加工和充磁工艺简单的新型永磁转子结构.然后,利用场路耦合分析,计算了高速永磁电机的空、负载特性和电机内的电磁场,部分验证了这种特殊结构的永磁同步电机电磁设计的合理性. 相似文献
7.
基于改进遗传算法的微型电动车轮毂电机优化设计 总被引:1,自引:0,他引:1
为了获得高效率和低成本的微型电动车轮毂电机,优化设计一种新型驱动轮毂电机。介绍简单遗传算法和模式搜索法在驱动轮毂电机优化设计中的应用,针对它们优化设计效果不显著的缺点,提出一种改进的遗传算法。在对微型电动车轮毂电机进行研究的基础上,针对驱动轮毂电机设计特点,重新建立驱动轮毂电机优化设计数学模型,并以实例进行优化计算。研究结果表明:驱动轮毂电机的效率提高,成本降低,能满足微型电动车对驱动轮毂电机的使用要求,因此,对于驱动轮毂电机的优化设计,改进遗传算法是一种比较理想的算法,具有广阔的工程应用价值。 相似文献
8.
针对传统增程电动车动力系统布置困难、轴荷分配不合理等问题,构建增程器前置轮毂电机后驱的动力系统构型,根据设计指标与整车参数完成动力系统参数匹配,利用MATLAB\\Simulink\\Stateflow搭建整车控制策略,利用AVL Cruise仿真软件在新欧洲驾驶循环(NEDC工况)下对整车的动力性、经济性与控制策略进行分析。仿真结果显示:整车百公里加速时间为10.35 s,最高车速为158.48 km/h,车速20 km/h时最大爬坡度为34%;NEDC工况下总续驶里程为311.53 km,纯电动模式下百公里电耗为16.67 kWh,增程模式下百公里油耗为6.18 L;各工作模式均可在特定工况下开启或关闭。提出的动力系统方案满足整车对动力性、经济性的要求,搭建的控制策略与增程式电动车的工作模式相符,相关研究为提高增程式电动的性能提供了解决思路。 相似文献
9.
10.
针对轮毂电驱动汽车乘坐舒适性变差及驱动电机的质量问题, 建立了车身与车轮两自由度四分之一车辆
振动系统模型, 通过计算不变点说明乘坐舒适性变差的原因, 并给出驱动电机的质量要求以提高乘坐舒适性,
并用 Simulink 对结果仿真和验证。 结果表明, 频率不变点不会因为弹簧刚度和阻尼系数的改变而改变, 而且频
率不变点所对应的车身加速度对路面输入速度的幅频特性值很接近极大值, 对乘坐舒适性影响很大, 导致轮毂
电驱动汽车乘坐舒适性变差, 并给出驱动电机最适合整车舒适性的质量要求。 相似文献
11.
轮毂电机驱动式微型电动汽车电子差速控制策略 总被引:1,自引:0,他引:1
针对轮毂电机驱动式微型电动汽车的电子差速控制,考虑滑转率和轴荷转移的影响,提出了以驱动轮转矩为控制量,以电动汽车内外侧驱动轮滑转率均衡为控制目标,并考虑汽车转弯时轴荷转移的差速控制策略,进行了差速控制实车试验.试验结果表明,所采用的控制策略合理,控制器能够较好地协调2后驱动轮转矩,实现了汽车电子差速控制. 相似文献
12.
基于四轮轮毂电机电动汽车,对固定横摆角速度增益控制问题进行了研究。首先在Car Sim中建立线控转向汽车模型,应用Isight软件对固定横摆角速度增益进行优化设计。根据四轮轮毂电机电动汽车四轮驱/制动力矩独立可控的优势,基于模糊PI控制理论设计了附加横摆力矩决策控制器。采用驱/制动力规则分配方法对四轮驱/制动力进行合理分配;并通过Car Sim与Simulink联合仿真,选取中低车速变车速蛇形试验工况和高速双移线工况对控制方法进行了验证。结果表明:控制后汽车能够很好地跟踪期望横摆角速度,减轻驾驶员转向负担,有效地提高了汽车低速转向灵敏性、高速转向操纵稳定性和转向行驶舒适性。 相似文献
13.
四轮独立驱动电动汽车通过轮毂电机直接驱动车辆,电磁力输出波动直接作用于车轮和悬架,将导致车辆的动力学性能恶化。利用傅立叶级数法,建立考虑不平衡径向力的悬架系统机电耦合模型。在此基础上,提出了电磁主动悬架多目标粒子群优化设计方法,以抑制轮毂电机驱动电动汽车的振动负效应问题。研究结果表明:通过对主动悬架构型以及控制器参数的多目标优化设计,能有效削弱振动负效应,改善电动汽车的安全性和舒适性。 相似文献
14.
为了解决轮边驱动电动汽车由于控制自由度冗余易造成的操纵稳定性降低的问题,基于逻辑门限值理论设计了一种使车辆能适应转向行驶及直线行驶的驱动转矩协调综合控制系统.该控制系统考虑了车辆转向行驶时轴荷转移、向心力及轮胎侧偏等影响,实现车辆的转向差速控制,使车辆能够按照驾驶员的期望在理想道路轨迹上行驶;并通过对驱动电机转矩进行协调控制,消除非期望横摆力矩的影响,提高车辆在直线行驶过程中的操纵稳定性.仿真结果表明,所提出的转矩协调控制方法改善了轮边驱动电动汽车的操纵性能. 相似文献
15.
基于汽车动力学的分析,提出了电动轮驱动系统应遵循的控制原则即输出转矩闭环控制;比较了目前常用的开关磁阻电机转矩控制策略,并提出了新的控制方案.该方案通过放置辅助检测绕组和采用硬件积分器,对电机绕组磁链进行实时检测;结合绕组电流进行转矩估算,经过转矩误差PID反馈控制,实现电机输出转矩对转矩给定指令的跟踪.建立了实际的转矩闭环控制系统并进行了实验研究.实测得到的电机输出特性证明了所提出的控制策略的正确性. 相似文献
16.
针对电动汽车用轮毂无刷直流电机的转矩控制进行研究,在满足驾驶员需求功率下,对估算得到的电机输出转矩进行闭环控制,达到了电机的目标输出转矩,能简化控制系统、实现准确控制,提高了系统瞬态响应.利用MATLAB/Simulink搭建了车辆行驶在ECE40行车状态时的动态仿真平台.仿真结果显示:建立的电机转矩控制系统能够控制电机满足驾驶员控制车速的需求,且估算到的输出转矩与电机实际的输出转矩较好的吻合,能使轮毂电机高效、稳定、快速地产生电磁转矩,改善了电动汽车驱动系统性能. 相似文献
17.
为了在工况变换控制过程中,实现基于电动机系统最佳效率的优化控制,构建了电动机系统效率与转速及转矩之间的关系式.由实车测得的数据,确定了研究工况的范围,在电动机加载试验台上对电动机系统效率特性进行了测试,结果显示被测驱动电动机系统效率η>80%的区域面积占整个测试区域范围的77.1%.基于最小二乘法,对电动机系统效率进行曲面拟合,综合考虑拟合结果的精度及运算工作量,确定采用4次函数构建电动机系统效率模型;利用驱动电动机外特性部分工况点测试结果对模型进行了验证.结果表明:模型计算值与实测值的最大相对误差为3.9%,建立的模型是有效的,该模型能够为在整车控制器中制定基于电动机系统最佳效率的优化控制策略提供依据. 相似文献