首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of chronic disorders affecting the central nervous system (CNS) is complicated by the inability of drugs to cross the blood–brain barrier (BBB). Non-viral gene therapy applied to brain capillary endothelial cells (BCECs) denotes a novel approach to overcome the restraints in this passage, as turning BCECs into recombinant protein factories by transfection could result in protein secretion further into the brain. The present study aims to investigate the possibility of transfecting primary rat brain endothelial cells (RBECs) for recombinant protein synthesis and secretion of the neuroprotective protein erythropoietin (EPO). We previously showed that 4% of RBECs with BBB properties can be transfected without disrupting the BBB integrity in vitro, but it can be questioned whether this is sufficient to enable protein secretion at therapeutic levels. The present study examined various transfection vectors, with regard to increasing the transfection efficiency without disrupting the BBB integrity. Lipofectamine 3000? was the most potent vector compared to polyethylenimine (PEI) and Turbofect. When co-cultured with astrocytes, the genetically modified RBECs secreted recombinant EPO into the cell culture medium both luminally and abluminally, and despite lower levels of EPO reaching the abluminal chamber, the amount of recombinant EPO was sufficient to evolve a biological effect on astrocytes cultured at the abluminal side in terms of upregulated gene expression of brain-derived neurotropic factor (BDNF). In conclusion, non-viral gene therapy to RBECs leads to protein secretion and signifies a method for therapeutic proteins to target cells inside the CNS otherwise omitted due to the BBB.  相似文献   

2.
Poly(methoxypolyethyleneglycol cyanoacrylate-co-hexadecylcyanoacrylate) (PEG-PHDCA) nanoparticles have demonstrated their capacity to diffuse through the blood-brain barrier after intravenous administration. However, the mechanism of transport of these nanoparticles into brain has not yet been clearly elucidated. The development of a model of rat brain endothelial cells (RBEC) in culture has allowed investigations into this mechanism. A study of the intracellular trafficking of nanoparticles by cell fractionation and confocal microscopy showed that nanoparticles are internalized by the endocytic pathway. Inhibition of the caveolae-mediated pathway by preincubation with filipin and nystatin did not modify the cellular uptake of the nanoparticles. In contrast, chlorpromazine and NaN3 pretreatment, which interferes with clathrin and energy-dependent endocytosis, caused a significant decrease of nanoparticle internalization. Furthermore, cellular uptake experiments with nanoparticles preincubated with apolipoprotein E and blocking of low-density lipoprotein receptors (LDLR) clearly suggested that the LDLR-mediated pathway was involved in the endocytosis of PEGPHDCA nanoparticles by RBEC. Received 1 September 2006; received after revision 4 December 2006; accepted 18 December 2006  相似文献   

3.
4.
There are two barriers for iron entry into the brain: (1) the brain–cerebrospinal fluid (CSF) barrier and (2) the blood–brain barrier (BBB). Here, we review the literature on developmental iron accumulation by the brain, focusing on the transport of iron through the brain microvascular endothelial cells (BMVEC) of the BBB. We review the iron trafficking proteins which may be involved in the iron flux across BMVEC and discuss the plausible mechanisms of BMVEC iron uptake and efflux. We suggest a model for how BMVEC iron uptake and efflux are regulated and a mechanism by which the majority of iron is trafficked across the developing BBB under the direct guidance of neighboring astrocytes. Thus, we place brain iron uptake in the context of the neurovascular unit of the adult brain. Last, we propose that BMVEC iron is involved in the aggregation of amyloid-β peptides leading to the progression of cerebral amyloid angiopathy which often occurs prior to dementia and the onset of Alzheimer’s disease.  相似文献   

5.
The role of some serine/threonine kinases in the regulation of mitochondrial physiology is now well established, but little is known about mitochondrial tyrosine kinases. We showed that tyrosine phosphorylation of rat brain mitochondrial proteins was increased by in vitro addition of ATP and H2O2, and also during in situ ATP production at state 3, and maximal reactive oxygen species production. The Src kinase inhibitor PP2 decreased tyrosine phosphorylation and respiratory rates at state 3. We found that the 39-kDa subunit of complex I was tyrosine phosphorylated, and we identified putative tyrosine-phosphorylated subunits for the other complexes. We also have strong evidence that the FoF1-ATP synthase α chain is probably tyrosine-phosphorylated, but demonstrated that the β chain is not. The tyrosine phosphatase PTP 1B was found in brain but not in muscle, heart or liver mitochondria. Our results suggest that tyrosine kinases and phosphatases are involved in the regulation of oxidative phosphorylation.Received 7 January 2005; received after revision 19 April 2005; accepted 22 April 2005  相似文献   

6.
Low delivery of many anticancer drugs across the blood–brain barrier (BBB) is a limitation to the success of chemotherapy in glioblastoma. This is because of the high levels of ATP-binding cassette transporters like P-glycoprotein (Pgp/ABCB1), which effluxes drugs back to the bloodstream. Temozolomide is one of the few agents able to cross the BBB; its effects on BBB cells permeability and Pgp activity are not known. We found that temozolomide, at therapeutic concentration, increased the transport of Pgp substrates across human brain microvascular endothelial cells and decreased the expression of Pgp. By methylating the promoter of Wnt3 gene, temozolomide lowers the endogenous synthesis of Wnt3 in BBB cells, disrupts the Wnt3/glycogen synthase kinase 3/β-catenin signaling, and reduces the binding of β-catenin on the promoter of mdr1 gene, which encodes for Pgp. In co-culture models of BBB cells and human glioblastoma cells, pre-treatment with temozolomide increases the delivery, cytotoxicity, and antiproliferative effects of doxorubicin, vinblastine, and topotecan, three substrates of Pgp that are usually poorly delivered across BBB. Our work suggests that temozolomide increases the BBB permeability of drugs that are normally effluxed by Pgp back to the bloodstream. These findings may pave the way to new combinatorial chemotherapy schemes in glioblastoma.  相似文献   

7.
Tight junctions seal intercellular clefts via membrane-related strands, hence, maintaining important organ functions. We investigated the self-association of strand-forming transmembrane tight junction proteins. The regulatory tight junction protein occludin was differently tagged and cotransfected in eucaryotic cells. These occludins colocalized within the plasma membrane of the same cell, coprecipitated and exhibited fluorescence resonance energy transfer. Differently tagged strand-forming claudin-5 also colocalized in the plasma membrane of the same cell and showed fluorescence resonance energy transfer. This demonstrates self-association in intact cells both of occludin and claudin-5 in one plasma membrane. In search of dimerizing regions of occludin, dimerization of its cytosolic C-terminal coiledcoil domain was identified. In claudin-5, the second extracellular loop was detected as a dimer. Since the transmembrane junctional adhesion molecule also is known to dimerize, the assumption that homodimerization of transmembrane tight junction proteins may serve as a common structural feature in tight junction assembly is supported. Received 6 October 2005; received after revision 14 December 2005; accepted 27 December 2005 †These authors contributed equally to this work.  相似文献   

8.
Summary Using indomethacin (Ind), a prostaglandin, synthesis inhibitor, in vivo experiments in rats and in vitro experiments with perifusion systems of rat thyroids and pituitaries were conducted. After 35 days of intragastric infusion of Ind, serum TSH levels were markedly increased, the thyroid was swollen and, as a consequence, T3 and T4 levels were normal. The T3 release from perifused rat thyroids under continuous stimulation with 10 mU/ml TSH was inhibited significantly (p<0.01) by 1.0×10–6 M Ind. On the other hand, the TSH release from perifused rat pituitaries under TRH stimulation was enhanced conspicuously by Ind. It was concluded that Ind decelerated thyroid hormone release from the thyroid and accelerated TSH release from the pituitary in perifusion systems.  相似文献   

9.
Summary A reproducible in vivo d-LSD binding method in rat brain is described, with high affinity (Kd of 5 pmoles/g wet wt), stereospecificity (d-vs, vs. l-LSD) and regional selectivity. It may be a useful adjunct to in vitro methods for measuring changes in turnover at the synaptic level related to the intact receptor.  相似文献   

10.
Angiogenesis, the formation of new blood vessels from pre-existing vessels, in the central nervous system (CNS) is seen both as a normal physiological response as well as a pathological step in disease progression. Formation of the blood–brain barrier (BBB) is an essential step in physiological CNS angiogenesis. The BBB is regulated by a neurovascular unit (NVU) consisting of endothelial and perivascular cells as well as vascular astrocytes. The NVU plays a critical role in preventing entry of neurotoxic substances and regulation of blood flow in the CNS. In recent years, research on numerous acquired and hereditary disorders of the CNS has increasingly emphasized the role of angiogenesis in disease pathophysiology. Here, we discuss molecular mechanisms of CNS angiogenesis during embryogenesis as well as various pathological states including brain tumor formation, ischemic stroke, arteriovenous malformations, and neurodegenerative diseases.  相似文献   

11.
The vascular endothelium plays a crucial role in regulating normal blood vessel physiology. The gene products responsible are commonly expressed exclusively, or preferentially, in this cell type. However, despite the importance of regulated gene expression in the vascular endothelium, relatively little is known about the mechanisms that restrict endothelial-specific gene expression to this cell type. While significant progress has been made towards understanding the regulation of endothelial genes through cis/trans paradigms, it has become apparent that additional mechanisms must also be operative. For example, chromatin-based mechanisms, including cell-specific DNA methylation patterns and post-translational histone modifications, have recently been demonstrated to play important roles in the cell-specific expression of endothelial nitric oxide synthase (eNOS). This review investigates the involvement of epigenetic regulatory mechanisms in vascular endothelial cell-specific gene expression using eNOS as a prototypical model, and will address the possible contributions of these pathways to diseases of the vasculature. Received 13 September 2005; received after revision 13 October 2005; accepted 19 October 2005  相似文献   

12.
Cell-permeable phosphorescent probes enable the study of cell and tissue oxygenation, bioenergetics, metabolism, and pathological states such as stroke and hypoxia. A number of such probes have been described in recent years, the majority consisting of cationic small molecule and nanoparticle structures. While these probes continue to advance, adequate staining for the study of certain cell types using live imaging techniques remains elusive; this is particularly true for neural cells. Here we introduce novel probes for the analysis of neural cells and tissues: negatively charged poly(methyl methacrylate-co-methacrylic acid)-based nanoparticles impregnated with a phosphorescent Pt(II)-tetrakis(pentafluorophenyl)porphyrin (PtPFPP) dye (this form is referred to as PA1), and with an additional reference/antennae dye poly(9,9-diheptylfluorene-alt-9,9-di-p-tolyl-9H-fluorene) (this form is referred to as PA2). PA1 and PA2 are internalised by endocytosis, result in efficient staining in primary neurons, astrocytes, and PC12 cells and multi-cellular aggregates, and allow for the monitoring of local O2 levels on a time-resolved fluorescence plate reader and PLIM microscope. PA2 also efficiently stains rat brain slices and permits detailed O2 imaging experiments using both one and two-photon intensity-based modes and PLIM modes. Multiplexed analysis of embryonic rat brain slices reveals age-dependent staining patterns for PA2 and a highly heterogeneous distribution of O2 in tissues, which we relate to the localisation of specific progenitor cell populations. Overall, these anionic probes are useful for sensing O2 levels in various cells and tissues, particularly in neural cells, and facilitate high-resolution imaging of O2 in 3D tissue models.  相似文献   

13.
Ethanol inhibits insulin expression and actions in the developing brain   总被引:4,自引:0,他引:4  
Ethanol-induced cerebellar hypoplasia is associated with inhibition of insulin-stimulated survival signaling. The present work explores the mechanisms of impaired insulin signaling in a rat model of fetal alcohol syndrome. Real-time quantitative RT-PCR demonstrated reduced expression of the insulin gene in cerebella of ethanol-exposed pups. Although receptor expression was unaffected, insulin and insulin-like growth factor (IGF-I) receptor tyrosine kinase (RTK) activities were reduced by ethanol exposure, and these abnormalities were associated with increased PTP1b activity. In addition, glucose transporter molecule expression and steady-state levels of ATP were reduced in ethanol-exposed cerebellar tissue. Cultured cerebellar granule neurons from ethanol-exposed pups had reduced expression of genes encoding insulin, IGF-II, and the IGF-I and IGF-II receptors, and impaired insulin- and IGF-I-stimulated glucose uptake and ATP production. The results demonstrate that ethanol inhibits insulin-mediated actions in the developing brain by reducing local insulin production and insulin RTK activation, leading to inhibition of glucose transport and ATP production.Received 30 December 2004; received after revision 1 March 2005; accepted 10 March 2005  相似文献   

14.
The endothelium, a monolayer of endothelial cells lining vessel walls, maintains tissue-fluid homeostasis by restricting the passage of the plasma proteins and blood cells into the interstitium. The ion Ca2+, a ubiquitous secondary messenger, initiates signal transduction events in endothelial cells that is critical to control of vascular tone and endothelial permeability. The ion Ca2+ is stored inside the intracellular organelles and released into the cytosol in response to environmental cues. The inositol 1,4,5-trisphosphate (IP3) messenger facilitates Ca2+ release through IP3 receptors which are Ca2+-selective intracellular channels located within the membrane of the endoplasmic reticulum. Binding of IP3 to the IP3Rs initiates assembly of IP3R clusters, a key event responsible for amplification of Ca2+ signals in endothelial cells. This review discusses emerging concepts related to architecture and dynamics of IP3R clusters, and their specific role in propagation of Ca2+ signals in endothelial cells.  相似文献   

15.
The blood–brain barrier (BBB) is a dynamic structure that maintains the homeostasis of the brain and thus proper neurological functions. BBB compromise has been found in many pathological conditions, including neuroinflammation. Monocyte chemoattractant protein-1 (MCP1), a chemokine that is transiently and significantly up-regulated during inflammation, is able to disrupt the integrity of BBB and modulate the progression of various diseases, including excitotoxic injury and hemorrhage. In this review, we first introduce the biochemistry and biology of MCP1, and then summarize the effects of MCP1 on BBB integrity as well as individual BBB components.  相似文献   

16.
“Jnking” atherosclerosis   总被引:1,自引:0,他引:1  
Numerous studies in animal models established a key role of the C-jun N-terminal kinase (JNK) family (JNK1, JNK2 and JNK3) in numerous pathological conditions, including cancer, cardiac hypertrophy and failure, neurodegenerative disorders, diabetes, arthritis and asthma. A possible function of JNK in atherosclerosis remained uncertain since conclusions have mainly been based on in vitro studies investigating endothelial cell activation, T-effector cell differentiation and proliferation of vascular smooth muscle cells, all of which represent crucial cellular processes involved in atherosclerosis. However, recent experiments demonstrated that macrophage-restricted deletion of JNK2 was sufficient to efficiently reduce atherosclerosis in mice. Furthermore, it has been shown that JNK2 specifically promotes scavenger receptor A-mediated foam cell formation, an essential step during early atherogenesis, which occurs when vascular macrophages internalize modified lipoproteins. Thus, specific inhibition of JNK2 activity may emerge as a novel and promising therapeutic approach to attenuate atheroma formation in the future. In this review, we discuss JNK-dependent cellular and molecular mechanisms underlying atherosclerosis. Received 9 June 2005; received after revision 18 July 2005; accepted 18 July 2005  相似文献   

17.
18.
Summary Acute lowering of blood pH between 7.4 and 6.9 in rats by ventilation with 10 or 20% CO2 does not increase the passage of ferritin molecules across the aortic endothelium. These results do not rule out alteration of endothelial permeability to anionic macromolecules in local circulatory disturbances when blood pH drops to levels much lower than 6.9.Supported by The Medical Research Council of Canada grant No. MA-5958.Dr J.R. Fraser was a recipient of a Summer Research Scholarship from McGill University during the completion of this study.The authors thank Colin Bier for the statistical analysis.  相似文献   

19.
Summary The ‘in vitro’ activity of ergotamine, dihydroergocristine, dihydroergocornine and dihydroergocryptine on the phosphodiesterase system at low and high Km in several rat brain areas was examined. These drugs were found to exert an inhibitory effect in all the areas examined with regard to both systems, and particularly on low substrate concentration phosphodiesterases. Acknowledgments. Ergot alkaloids were a generous gift of Poli Industria Chimica, Milan.  相似文献   

20.
Astrocytes interact with neurons and endothelial cells and may mediate exchange of metabolites between capillaries and nerve terminals. In the present study, we investigated intracellular glucose diffusion in purified astrocytes after local glucose uptake. We used a fluorescence resonance energy transfer (FRET)-based nano sensor to monitor the time dependence of the intracellular glucose concentration at specific positions within the cell. We observed a delay in onset and kinetics in regions away from the glucose uptake compared with the region where we locally super-fused astrocytes with the d-glucose-rich solution. We propose a mathematical model of glucose diffusion in astrocytes. The analysis showed that after gradual uptake of glucose, the locally increased intracellular glucose concentration is rapidly spread throughout the cytosol with an apparent diffusion coefficient (D app) of (2.38 ± 0.41) × 10?10 m2 s?1 (at 22–24 °C). Considering that the diffusion coefficient of d-glucose in water is D = 6.7 × 10?10 m2 s?1 (at 24 °C), D app determined in astrocytes indicates that the cytosolic tortuosity, which hinders glucose molecules, is approximately three times higher than in aqueous solution. We conclude that the value of D app for glucose measured in purified rat astrocytes is consistent with the view that cytosolic diffusion may allow glucose and glucose metabolites to traverse from the endothelial cells at the blood–brain barrier to neurons and neighboring astrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号