首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leprosy displays a remarkable spectrum of symptoms correlating with the T-cell-mediated immune reactivity of the host against the causative organism, Mycobacterium leprae. At one pole of this spectrum are lepromatous leprosy patients showing a M. leprae-specific T-cell unresponsiveness; at the other are tuberculoid leprosy patients displaying both acquired immunity and delayed-type hypersensitivity against M. leprae which are thought to be conferred by helper T (Th) cells. Because well-defined M. leprae antigens are crucial for the prevention and control of leprosy, we have cloned M. leprae-reactive T cells (TLC) of the helper phenotype from a tuberculoid leprosy patient. As reported here, these TLC show an unexpected diversity in the recognition of M. leprae and related mycobacteria, which is different from that exhibited by monoclonal antibodies. Half of these TLC are completely or almost M. leprae-specific, whereas the other half are cross-reactive with most or all other mycobacteria. A M. leprae protein of relative molecular mass (Mr) 36,000 (36K) defined by a M. leprae-specific monoclonal antibody stimulates 4 out of 6 TLC tested. Each of these TLC recognizes a different antigenic determinant, one of which is M. leprae-specific. The previous paper describes other M. leprae-specific T-cell clones half of which recognize an epitope on a M. leprae protein of Mr 18 K.  相似文献   

2.
Lymphocyte suppression in leprosy induced by unique M. leprae glycolipid   总被引:2,自引:0,他引:2  
V Mehra  P J Brennan  E Rada  J Convit  B R Bloom 《Nature》1984,308(5955):194-196
Leprosy remains a significant medical and social problem in many developing countries. The varied forms of the disease form a spectrum. At one pole, tuberculoid leprosy, patients develop high levels of cell-mediated immunity which results in the killing and clearing of bacilli in the tissues. At the lepromatous pole, patients exhibit a selective immunological unresponsiveness to antigens of Mycobacterium leprae so that the organisms inexorably multiply in the skin. We have suggested that in lepromatous leprosy one or a small number of unique antigenic determinants present on M. leprae might induce specific suppressor cells that inhibit the reactivity of helper T-cell clones capable of recognizing other specific or cross reactive determinants. Although unique epitopes have been identified by monoclonal antibodies on a small number of M. leprae proteins, the only unique species of antigen present in M. leprae, and not on any other species of mycobacteria so far examined, is a phenolic glycolipid (gly-I). We show here that this unique antigen of M. leprae is capable of inducing suppression of mitogenic responses of lepromatous patients' lymphocytes in vitro and provide evidence that the suppressor T cells recognize the specific terminal trisaccharide moiety.  相似文献   

3.
Leprosy is a spectral disease in which immune responses to Mycobacterium leprae correlate with the clinical, bacteriological and histopathological manifestations of disease, so study of its pathology provides insights into immunoregulatory mechanisms in man. At the tuberculoid pole, patients have few lesions in the skin which contain rare organisms and are able to mount strong cell-mediated immune responses to M. leprae antigens. In contrast, at the lepromatous pole, patients have disseminated skin lesions containing large numbers of acid-fast bacilli and are selectively unresponsive to antigens of M. leprae. M. leprae-induced suppressor cells derived from peripheral blood have been reported to be active in vitro, yet their in vivo significance has remained unclear. Because the focal point of the immune response to M. leprae is the skin lesion consisting of lymphocytes and macrophages, we have recently developed methods for isolating lymphocytes from skin biopsies of leprosy patients. We report here that two T8 clones derived from lepromatous leprosy skin biopsies, in the presence of lepromin, suppress concanavalin A (Con-A) responses both of peripheral blood mononuclear cells and of T4 clones in an HLA-D (HLA, histocompatibility locus antigen)-restricted manner. Moreover, these T8 clones suppressed responses of HLA-D-matched, but not HLA-D-mismatched antigen-responsive T4 clones to M. leprae antigens, indicating that T-cell suppression is major histocompatibility complex (MHC)-restricted at some level in man.  相似文献   

4.
Leprosy is a chronic infectious disease caused by Mycobacterium leprae. A characteristic feature of the disease is its remarkable spectrum of clinical symptoms correlating with the cellular immune responsiveness of the patient. At one pole of this spectrum are tuberculoid patients displaying both acquired cell-mediated immunity and delayed type hypersensitivity against the bacillus. At the other pole are lepromatous patients which show a specific T-cell unresponsiveness against M. leprae. In between those two poles variable degrees of tuberculoid and lepromatous features may be seen in borderline leprosy patients. Thus far, studies on the mechanism of the antigen specific unresponsiveness in lepromatous leprosy have been contradictory and difficult to interpret, probably because of the use of heterogeneous cell populations in those experiments. We have now succeeded in cloning M. leprae stimulated T-helper (TH) as well as T-suppressor (TS) cells from a borderline lepromatous patient. The TS-clones of this patient specifically suppress responses of peripheral TH cells as well as TH clones induced by both M. leprae and other mycobacteria, but not unrelated antigen or mitogen. These TS cells also completely suppress TH cell responses against a M. leprae specific protein with a relative molecular mass of 36,000 (36K), suggesting the presence of a suppression inducing determinant on this 36K M. leprae protein.  相似文献   

5.
In some subjects the infective agent of leprosy, Mycobacterium leprae, causes disseminated (lepromatous) disease. Such subjects have a major role in the transmission of the disease and show deficient T-cell responses both in vivo and in vitro to M. leprae, but not to other antigens. Numerous studies have recently shown that T cells with functional capabilities after initial triggering with antigen can be maintained in a state of continuous proliferation in vitro when cultured in medium containing interleukin 2 (IL-2). Here we have studied the effect of IL-2 rich T-cell conditioned medium on lepromatous peripheral blood mononuclear cells. Our results show that although lepromatous T cells fail to produce IL-2 after exposure to M. leprae they can respond by proliferation to M. leprae in the presence of T-cell conditioned medium, suggesting that the unresponsiveness in lepromatous leprosy results from a deficiency in the production of IL-2 or related factors and not a lack of M. leprae-reactive T cells.  相似文献   

6.
N Suciu-Foca  E Reed  P Rubinstein  W MacKenzie  A K Ng  D W King 《Nature》1985,318(6045):465-467
T lymphocytes possessing helper function produce soluble factors that greatly augment B-cell proliferation and differentiation into antibody-secreting cells. In humans the subset of T lymphocytes bearing the T4 surface antigen comprises most of the cells that display helper activity and recognize class II antigens of the major histocompatibility complex (MHC), while the subset bearing the T8 antigen comprises T cells recognizing class I MHC antigens and exhibiting cytotoxic or suppressor function. Monoclonal antibodies to T4 or T8 greatly inhibit the cognitive and effector function of cells with the corresponding phenotype. This function/phenotype correlation is not absolute, however, for there are many examples of T8-positive clones that recognize MHC class II antigens and have helper activity, as well as of T4-positive clones with suppressor or cytotoxic function. Recently a family of cell-surface neoantigens, which might be relevant to T-cell function and which are present on activated but not on resting T lymphocytes, has been identified in mouse and humans using monoclonal antibodies. Some of these antibodies block the cytolytic activity of alloreactive T-cell clones, suggesting the possible involvement of such molecules in the activation of cytotoxic T-cell clones or in the lytic process itself. We now describe a similar late-differentiation antigen (LDA1) that is expressed by human T lymphocytes only following activation and is recognized by a monoclonal antibody that inhibits the antibody-inducing helper function of T lymphocytes.  相似文献   

7.
G Corradin  H D Engers 《Nature》1984,308(5959):547-548
Attempts to inhibit the recognition of soluble antigens by T lymphocytes using antibodies specific for the antigen in question have been uniformally unsuccessful, in contrast to the observed specific inhibition of antibody generation by B cells. One exception is the unique situation whereby anti-hapten antisera inhibit the T-cell proliferative responses observed when hapten-specific T lymphocytes or clones are cultured with hapten-derivatized cells or proteins. The inability to inhibit T-cell functions by antigen-specific antibodies has been interpreted in several ways: (1) T cells possess a different repertoire from B cells; (2) the antibodies tested recognize epitopes present on the native antigen, whereas T cells recognize non-native (processed) structures; (3) the antigenic determinant(s) recognized by T cells on the surface of antigen presenting cells are either not accessible to antibodies, or are present in low amounts. The development of antigen-specific T-cell clones and monoclonal antibodies both specific for the same antigenic determinants now allows this question to be investigated definitively. Here, we report for the first time the specific inhibition of antigen-induced T-cell clone proliferation by a monoclonal antibody directed against the relevant soluble protein antigen.  相似文献   

8.
Adjuvant arthritis (AA) is a chronic disease inducible in rats by immunization with an antigen of Mycobacterium tuberculosis. After the isolation of arthritogenic T-cell lines and clones, it became possible to demonstrate that the critical M. tuberculosis antigen contained an epitope cross-reactive with a self-antigen in joint cartilage. Like AA rats, patients suffering from rheumatoid arthritis demonstrated specific T-lymphocyte reactivity to the M. tuberculosis fraction containing the cross-reactive epitope. To characterize the critical M. tuberculosis epitope we used AA T-cell clones to screen mycobacterial antigens expressed in Escherichia coli and genetically engineered truncated proteins and synthetic peptides. The AA T-cell clones recognized an epitope formed by the amino acids at positions 180-188 in the sequence of a Mycobacterium bovis BCG antigen. Administration of this antigen to rats induced resistance to subsequent attempts to produce AA.  相似文献   

9.
S Porcelli  C T Morita  M B Brenner 《Nature》1992,360(6404):593-597
Molecules encoded by the human CD1 locus on chromosome 1 (ref. 33) are recognized by selected CD4-8- T-cell clones expressing either alpha beta or gamma delta T-cell antigen receptors. The known structural resemblance of CD1 molecules to antigen-presenting molecules encoded by major histocompatibility complex (MHC) genes on human chromosome 6 (refs 3, 4, 34, 35), suggested that CD1 may represent a family of antigen-presenting molecules separate from those encoded in the MHC. Here we report that the proliferative and cytotoxic responses of human CD4-8- alpha beta TCR+ T cells specific for Mycobacterium tuberculosis can be restricted by CD1b, one of the four identified protein products of the CD1 locus. The responses of these T cells to M. tuberculosis seemed not to involve MHC encoded molecules, but were absolutely dependent on the expression of CD1b by the antigen-presenting cell and involved an antigen processing requirement similar to that seen in MHC class II-restricted antigen presentation. These results provide, to our knowledge, the first direct evidence for the proposed antigen-presenting function of CD1 molecules and suggest that the CD1 family plays a role in cell-mediated immunity to microbial pathogens.  相似文献   

10.
11.
The discovery of the CD1 antigen presentation pathway has expanded the spectrum of T-cell antigens to include lipids, but the range of natural lipid antigens and functions of CD1-restricted T cells in vivo remain poorly understood. Here we show that the T-cell antigen receptor and the CD1c protein mediate recognition of an evolutionarily conserved family of isoprenoid glycolipids whose members include essential components of protein glycosylation and cell-wall synthesis pathways. A CD1c-restricted, mycobacteria-specific T-cell line recognized two previously unknown mycobacterial hexosyl-1-phosphoisoprenoids and structurally related mannosyl-beta1-phosphodolichols. Responses to mannosyl-beta1-phosphodolichols were common among CD1c-restricted T-cell lines and peripheral blood T lymphocytes of human subjects recently infected with M. tuberculosis, but were not seen in naive control subjects. These results define a new class of broadly distributed lipid antigens presented by the CD1 system during infection in vivo and suggest an immune mechanism for recognition of senescent or transformed cells that are known to have altered dolichol lipids.  相似文献   

12.
J L Maryanski  J P Abastado  P Kourilsky 《Nature》1987,330(6149):660-662
The class I molecules of the major histocompatibility complex (H-2 in mouse, HLA in man) are membrane proteins composed of a polymorphic heavy chain associated with beta-2-microglobulin. Recent studies suggest that class I molecules present peptides derived from processed antigens to the receptor of cytolytic T cells. In particular, in the H-2d haplotype, synthetic HLA peptides can be recognized on Kd-bearing target cells by Kd-restricted cytolytic T cells specific for HLA. Here we analyse the specificity of presentation of two HLA peptides by a set of chimaeric Kd/Dd molecules to four different cytolytic T-cell clones. We identify two distinct regions within the second external (alpha 2) domain of Kd that contribute to its specificity as a restriction element. Our results indicate that the binding of an immunogenic peptide by a class I molecule is not always sufficient for its recognition by the T-cell antigen receptor. This suggests that the major histocompatibility complex restriction element either interacts with the T-cell antigen receptor or induces the recognized conformation of the peptide.  相似文献   

13.
B O Roep  S D Arden  R R de Vries  J C Hutton 《Nature》1990,345(6276):632-634
T LYMPHOCYTES reactive to pancreatic beta-cells are thought to have a central role in the autoimmune process leading to type 1 (insulin-dependent) diabetes, but the molecular targets of these T cells have not yet been defined. As identification of such antigens may enable measures to be developed to prevent the disease, we have characterized an antigen that is recognized by insulinoma membrane-reactive T-cell clones established from a newly diagnosed type-1 diabetes patient. Subcellular fractionation studies using rat insulinoma indicate that the antigenic determinant recognized by one of these clones is an integral membrane component of the insulin secretory granule. After a 5,000-fold purification, we have defined the antigen as a monomer of relative molecular mass 38,000. As granular membrane proteins are transiently exposed on the cell surface during exocytosis, their accessibility to components of the immune system may be a function of the secretory activity of beta-cells.  相似文献   

14.
H G Rammensee  M J Bevan 《Nature》1984,308(5961):741-744
Mature T cells respond to foreign antigens in the context of self major histocompatibility complex (MHC)-encoded products: T helper cells recognize antigen in the context of class II molecules, while cytotoxic T cells (CTL) recognize antigen plus class I molecules. Recent evidence suggests that the MHC-restricted T cell is unable to recognize either the foreign antigen or the self-MHC product alone, but only a complex of the two. Unresponsiveness to self antigens--self tolerance--implies the deletion or suppression of clones of T cells having reactivity to self antigens. Here we demonstrate the presence in normal mice of T cells which recognize self antigens together with allogeneic MHC products. This finding suggests the MHC restriction of T-cell recognition during the entire process of T-cell ontogeny, that is, MHC restriction of self tolerance.  相似文献   

15.
CD1d-lipid-antigen recognition by the semi-invariant NKT T-cell receptor   总被引:2,自引:0,他引:2  
The CD1 family is a large cluster of non-polymorphic, major histocompatibility complex (MHC) class-I-like molecules that bind distinct lipid-based antigens that are recognized by T cells. The most studied group of T cells that interact with lipid antigens are natural killer T (NKT) cells, which characteristically express a semi-invariant T-cell receptor (NKT TCR) that specifically recognizes the CD1 family member, CD1d. NKT-cell-mediated recognition of the CD1d-antigen complex has been implicated in microbial immunity, tumour immunity, autoimmunity and allergy. Here we describe the structure of a human NKT TCR in complex with CD1d bound to the potent NKT-cell agonist alpha-galactosylceramide, the archetypal CD1d-restricted glycolipid. In contrast to T-cell receptor-peptide-antigen-MHC complexes, the NKT TCR docked parallel to, and at the extreme end of the CD1d-binding cleft, which enables a lock-and-key type interaction with the lipid antigen. The structure provides a basis for the interaction between the highly conserved NKT TCR alpha-chain and the CD1d-antigen complex that is typified in innate immunity, and also indicates how variability of the NKT TCR beta-chain can impact on recognition of other CD1d-antigen complexes. These findings provide direct insight into how a T-cell receptor recognizes a lipid-antigen-presenting molecule of the immune system.  相似文献   

16.
M F Clarke  E P Gelmann  M S Reitz 《Nature》1983,305(5929):60-62
Human T-cell leukaemia virus (HTLV), first isolated in the United States from a patient with cutaneous T-cell lymphoma, is a unique horizontally transmitted retrovirus which is highly associated with certain adult T-cell malignancies. Also, HTLV can be transmitted in vitro to cord blood T-lymphocytes. In the accompanying paper it was shown that all T cells producing HTLV, whether cultured from infected persons or infected in vitro, bind a monoclonal antibody (4D12) which recognizes an epitope shared by certain cross-reactive class I major histocompatibility antigens. This antigen may account for the extra HLA-A and -B specificities detected in HTLV-infected cells using alloantisera. Because of the unusual findings of apparently inappropriate HLA antigens in HTLV infected cells, we had previously looked for rearrangement of class I-related genes in HTLV infected cells but failed to find any. Here, using molecular clones of HTLV and human major histocompatibility antigen DNA, we have shown homology between the envelope gene region of HTLV and the region of an HLA-B locus gene which codes for the extracellular portion of a class I histocompatibility antigen.  相似文献   

17.
K Hui  F Grosveld  H Festenstein 《Nature》1984,311(5988):750-752
Major histocompatibility complex (MHC) class I molecules can function as specific target antigens in T-cell-mediated cytotoxity. In addition, T cells can kill target cells through non-MHC antigens, for example, virally infected cells, if the target and effector cells express the same MHC class I antigens. Consequently, quantitative and/or qualitative variations in the expression of the H-2/HLA antigens on the target cells could interfere with MHC-restricted immune reactions. We have reported that the AKR leukaemia cell line K36.16, a subline of K36 (ref. 3), on which the H-2Kk antigen cannot be detected, is resistant to T-cell lysis and grows very easily in AKR mice. Other AKR tumour cell lines, like 369, which have a relatively large amount of H-2Kk on their surface, are easily killed by T cells in vitro and require a much larger inoculum to grow in vivo. Monoclonal antibodies against H-2Kk, but not against H-2Dk, prevented the killing by T cells. This suggests that some tumour cells grow in vivo because tumour-associated antigen(s) cannot be recognized efficiently by the host's immune system, due to the absence of MHC molecules which would function as restriction elements for T-cell cytotoxicity. We have tested this hypothesis by introducing the H-2Kk gene into the H-2Kk-deficient AKR tumour cell line K36.16 and have now demonstrated directly the biological relevance of H-2Kk antigen expression in the regulation of the in vivo growth of this tumour cell line.  相似文献   

18.
T-lymphocyte immunity is likely to be an important component of the immune defence against the AIDS virus, because helper T cells are necessary for the antibody response as well as the cytotoxic response. We have previously predicted two antigenic sites of the viral envelope protein gp120 likely to be recognized by T lymphocytes, based on their ability to fold as amphipathic helices, and have demonstrated that these are recognized by T cells of mice immunized with gp120 (ref. 1). A peptide corresponding to one of these sites can also be induce immunity in mice to the whole gp120 protein. Because many clinically healthy seropositive blood donors have already lost their T-cell proliferative response to specific antigen, we tested the response to these synthetic peptides of lymphocytes from 14 healthy human volunteers who had been immunized with a recombinant vaccinia virus containing the AIDS viral envelope gene and boosted with a recombinant fragment. Eight of the 14 responded to one peptide, and four to the other peptide, not included in the boost. These antigenic sites recognized by human T cells may be useful components of a vaccine against AIDS. We also found a correlation between boosting with antigen-antibody complexes (compared to free antigen) and higher stimulation indices, suggesting a more effective method of immunization.  相似文献   

19.
Reactivity of HTLV-transformed human T-cell lines to MHC class II antigens   总被引:1,自引:0,他引:1  
T-cell lines established from individuals infected with human T-cell leukaemia virus (HTLV) or generated by co-cultivation of normal human T cells with HTLV-infected T-cells, express class II (HLA-D/DR or Ia) antigens of the major histocompatibility complex (MHC) and interleukin-2 (IL-2) receptors. Because the expression of these markers characterizes the differentiation of immunologically activated T cells, we have now explored the possibility that HTLV- infected T cells might be primed to autologous or allogeneic Ia antigens expressed by the infecting cells. Our studies on the capacity of HTLV-infected T cells to display responses on mixed lymphocyte culture indicate that such T cells as well as single-cell clones derived from them, react non-discriminatively to all known allelic variants of human HLA-D/DR antigens, including those expressed by the responding cells. This reaction is inhibited by antibody to human Ia and is not triggered by Ia-negative T-leukaemia cells. The structure recognized seems to be a common epitope determinant of human Ia antigens, as (HTLV-infected) T cells primed in vitro to one HLA-D/DR specificity display amplified responses to all other HLA-D/DR antigens. We therefore believe that autostimulation by a self-Ia determinant may trigger the clonal expansion of HTLV-infected T cells and potentiate autoimmune processes.  相似文献   

20.
The HLA-D region of the human major histocompatibility complex (MHC) has been shown to be homologous to the murine I region in terms of both structure and function. Both regions encode class II MHC molecules which restrict T-lymphocyte interactions with antigen-presenting cells. We have recently described the MHC restriction and antigen specificities of human T-lymphocyte clones directed at strain A influenza virus. The majority of T-lymphocyte clones recognized antigen in the context of cell surface interaction products encoded by HLA-D/DR genes. However, a few clones recognized antigen presented by cells histoincompatible for D/DR antigens. We report here that some of these clones recognized viral antigens in association with antigens encoded by genes identical with or closely linked to the recently described secondary B-cell (SB) locus of the MHC. This is the first report that SB-restricted antigen recognition may form an integral part of normal, human immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号