首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
双离子电池是一种新型储能器件,采用常规的电化学方法研究1 M LiPF6-乙酸甲酯/碳酸乙烯酯(MA/EC)电解液中石墨电极PF-6的电化学行为。首先,用恒流充放电、循环伏安、电化学阻抗等分析PF-6阴离子的插嵌/脱嵌行为,得出PF-6在MA电解液中更容易插嵌;其次,结合X射线衍射(XRD)追踪PF-6阴离子存储过程中晶体结构的变化以及插嵌物类型;最后,推断阴离子PF-6的储能机理。  相似文献   

2.
量子化学原理在锂离子电池研究中的应用   总被引:2,自引:0,他引:2  
锂离子电池的发展强烈地依赖于相关材料的性能,因此对材料进行理论设计以寻找具有特定性能的材料以及对电池充放电过程中有关现象的理论解释已经成为材料研究的迫切要求.量子化学和现代计算技术的发展,已基本上能满足这一要求.本文综述了近年来量子化学原理在锂离子电池研究中的应用.重点评述了量子化学原理在锂离子电池电极材料平均插锂电压的预测、锂的嵌入-脱嵌机理研究、锂离子电池正极材料晶格畸变的研究以及其它物理化学性质的理论计算中的应用.  相似文献   

3.
超级电容器的储能机理与关键材料研究进展   总被引:1,自引:0,他引:1  
超级电容器作为一种新型的储能元件,具有高功率密度和高循环寿命等优点,在许多领域特别是混合电动汽车方面具有广阔的应用前景.电板材料和电解液是决定超级电容器性能的根本因素,本文对超级电容器储能机理,以及起级电容器关键材料研究进展进行了综述.  相似文献   

4.
本文介绍了全钒氧化还原流体电池及其结构和充放电机理。该电池是一种新型储能材料。它用VOSO4溶液作电极活性材料。一系列充放电试验结果表明,该电池具有良好的电化学性能。  相似文献   

5.
对近年来关于CaO/CaCO3储能与聚光发电的集成系统和多类型钙基材料储能研究进行综述.闭式CO2布雷顿循环CaO/CaCO3储能系统是最理想的一种集成方案,热电效率高达46%.随着储能循环次数的增加,常规钙基材料的性能迅速衰减,成为其工业化应用的主要缺陷.储能条件、储能材料的成分和微观形貌对钙基材料储能性能有显著影响...  相似文献   

6.
采用液相浸泡法,将吸湿性无机盐CaCl2与硅胶复合,制备出低温复合储能材料。对硅胶和复合储能材料的吸湿性能进行了对比实验,并利用吸附储能实验装置测试了它们的储能性能,研究了影响复合储能材料性能的因素.结果表明:较为合适的浸泡时间为4h;提高CaCl2含量和浸泡温度有利于复合储能材料吸湿量和质量热力学能(储能密度)的提高;随着吸湿能力的增强,复合储能材料的质量热力学能增大,可达1050J/g;同时,该复合储能材料可在90℃温度下有效再生,适用于太阳能、工业废热等低温热的储存和利用.  相似文献   

7.
正基于碳材料在储能器件中的广泛应用以及存在的各种问题,构筑了碳与金属/金属化合物或者碳与有机小分子/聚合物复合的二元、三元和多元电极材料,利用不同组分之间的协同作用,借助理论计算,系统地研究了复合电极材料的结构、电子传输机制及其对储能器件性能的影响,厘清了碳基复合电极材料内在结构与储能器件性能之间的构效关系,为高性能储能器件关键材料的研发和工业化应用提供了理论指导和技术支持。  相似文献   

8.
基于碳材料在储能器件中的广泛应用以及存在的各种问题,构筑了碳与金属/金属化合物或者碳与有机小分子/聚合物复合的二元、三元和多元电极材料,利用不同组分之间的协同作用,借助理论计算,系统地研究了复合电极材料的结构、电子传输机制及其对储能器件性能的影响,厘清了碳基复合电极材料内在结构与储能器件性能之间的构效关系,为高性能储能...  相似文献   

9.
采用表面改性后的金红石型纳米Ti O2与PTFE作为复合填料,将其与氟碳树脂(FEVE)结合,制备具有防污闪性能的纳米复合氟碳杂化材料,用压缩空气喷涂法将其涂覆在玻璃绝缘子基底表面形成氟碳防污闪涂层。采用红外光谱对改性后的纳米Ti O2进行表征分析,用扫描电镜、X线光电子能谱、接触角测量仪等观察和测试氟碳杂化涂层材料表面的微观结构及疏水性。研究结果表明:在Ti O2/PTFE改性复合氟碳防污闪涂层材料近表面区域上,Ti O2和PTFE之间通过化学键合作用形成具有类似乳突状的微/纳二元粗糙结构,对水静态接触角高达120°以上。涂层材料具有优良的耐水、耐化学试剂性、耐盐雾、耐漏电起痕及电蚀损性能,体积电阻率为2.5×1010?·m,击穿场强为21.1 k V/mm,耐漏电起痕级数为2.5级,最大电蚀深度为1.20~2.74 mm。  相似文献   

10.
常温固化氟碳涂料的研究进展   总被引:1,自引:0,他引:1  
氟碳树脂涂料以其优良的耐久性而受到关注.综述了常温固化氟碳涂料的组成、性能、应用研究和研究方法新进展,讨论了单体对氟碳涂料性能的影响,并指出了氟碳涂料的发展趋势.  相似文献   

11.
近年来,随着人们对能量需求的日益增大,已商业化应用的石墨电极已经很难满足高性能电子产品对高能量密度的需求,因此发展高能量密度的锂离子电池显得尤为重要。在已研究的先进材料中,硅已被证明存在巨大的储能潜力,其理论比容量(约4 200 mA·h·g-1)远高于已商业化应用的石墨类电极材料。对锂离子电池中硅电极材料的微纳结构、制备方法、电化学性能及相关机理进行了总结,目的是研究不同结构的硅电极材料对电池性能的影响,以找到性能较为优异的硅电极结构。结果表明,在已被研究的硅基复合材料中,核壳结构和多壁纳米管结构硅电极材料在电化学性能方面均体现出了明显的优势。最后简要分析了硅基电极材料发展中存在的问题,并对其研究前景进行了展望。  相似文献   

12.
The development of nanotechnology in recent decades has brought new opportunities in the exploration of new materials for solving the issues of fossil fuel consumption and environment pollution.Materials with nano-array architecture are emerging as the key due to their structure advantages,which offer the possibility to fabricate high-performance electrochemical electrodes and catalysts for both energy storage and effcient use of energy.The main challenges in this feld remain as rational structure design and corresponding controllable synthesis.This article reviews recent progress in our laboratory related to the hydrothermal synthesis of metal oxide and hydroxide nanoarrays,whose structures are designed aiming to the application on supercapacitors and catalysts.The strategies for developing advanced materials of metal oxide and hydroxide nanoarrays,including NiO,Ni(OH)2,Co3O4,Co3O4@Ni–Co–O,cobalt carbonate hydroxide array,and mixed metal oxide arrays like Co3 xFex O4and Znx Co3 xO4,are discussed.The different kinds of structure designs such as 1D nanorod,2D nanowall and hierarchical arrays were involved to meet the needs of the high performance materials.Finally,the future trends and perspectives in the development of advanced nanoarrays materials are highlighted.  相似文献   

13.
Mg-based materials are currently a hot research topic as hydrogen storage materials due to their considerable theoretical hydrogen storage capacity. However, the kinetic performance of hydrogen absorption and desorption of Mg is too slow and requires high temperature, which seriously hinders the application of this material. MXene is a new type of two-dimensional material with significant role in improving thermodynamics and kinetics. In this experiment, a two-dimensional layered MXene containing Cl functional group was prepared by molten salt etching using the Ti-containing MAX phase as the raw material. Then different ratios of Ti3C2Clx were uniformly dispersed onto the surface of Mg by high energy ball milling. The samples were characterized by hydrogen absorption and desorption kinetics, SEM, XRD, XPS, and DSC to investigate the effect of Ti3C2Clx on the hydrogen absorption and desorption performance of Mg. The onset hydrogen absorption temperature can be reduced to room temperature and the hydrogen release temperature is reduced by 200 ​°C by doping Ti3C2Clx. And there is also 5.4 ​wt% hydrogen storage in the isothermal hydrogen absorption test at 400 ​°C. The results of DSC demonstrate that the Ea of Mg+15 ​wt% Ti3C2Clx was reduced by 12.6% compared to pristine Mg. The ΔH is almost invariable. The results of XPS show that the presence of multivalent Ti promotes electron transfer and thus improves the conversion between Mg2+/Mg and H/H. This study provides a guideline for further improving the hydrogen absorption and desorption performance of Mg-based hydrogen storage materials.  相似文献   

14.
Lithium-ion batteries have long been used in electronic products and electric vehicles, but their energy density is slowly failing to keep up with demand. Because of its extraordinarily high theoretical specific capacity, silicon is regarded as the most potential next-generation anode material for practical lithium-ion batteries. However, its unavoidable volume expansion issue can cause electrode deformation and loss of electrical contact during cycling,resulting in significant performance reduc...  相似文献   

15.
Recent development in nanoscience and nanotechnology has opened up new frontiers in materials science and engineering to create new materials for energy generation and storage. Owing to their earth abundance, low-cost, structural tunability, large-surface area, and unique physicochemical properties, graphitic carbon materials have attracted a great deal of attention for energy-related applications. However, the pristine graphene materials without functionalization is intractable (insoluble and infusible), which has hindered their practical applications. Therefore, considerable research effort has been devoted to the development of functionalized graphene materials with desirable properties for specific applications, including energy conversion and storage. It was demonstrated that functionalized graphene materials with tunable work functions were useful as charge-extraction materials to effectively improve solar cell performance while those with high electrocatalytic activities could be used as metal-free catalysts in fuel cells, metal-air batteries, water splitting and integrated energy systems. This article provides a timely focused review on the development of heteroatom-doped graphene materials for low-cost, but efficient, energy generation and storage.  相似文献   

16.
近年来,锂离子电池被广泛地应用于便携式电子设备和手机,并且对于诸如电动汽车等更高要求的应用而言具有巨大的潜力。作为锂离子电池负极材料,Fe2O3是最有可能替代石墨的过渡金属氧化物之一。因其具有高的理论比容量(1 007 mA·h·g-1)、储量丰富、安全性能好、无毒、环境友好和成本低等一系列优点,被广泛应用于气体传感器、催化和锂离子电池电极材料等领域,是一种具有巨大潜力的电极材料。介绍了锂离子电池的基本结构组成和工作原理,综述了Fe2O3的储锂机制和制备方法,总结了近年来Fe2O3以及它的复合物作为锂离子电池负极材料的研究进展。  相似文献   

17.
[目的]铁铝合金在高温结构材料、加热元件等方面有广泛的应用,对其强化和韧化机理的研究对设计和开发新型铁铝基高温合金具有重要意义。[方法]采用真空熔炼方法制备不同铝含量的铁铝合金,经过不同的退火温度热处理后,用XRD方法测量其晶格常数,确定其X射线密度,采用阿基米德法测量其体密度,从而确定其空位浓度;用显微硬度计测量其硬度。[结果]空位浓度随着铝含量的增加而增加,随热处理温度的升高合金中空位浓度增加;显微硬度随铝含量的增加或热处理温度的升高而增大。[结论]随着铝含量的增加,空位形成能下降,空位浓度增加;随着热处理温度的升高,合金中空位浓度增大;合金显微硬度增大主要是由于空位浓度增加对位错的阻碍作用增强所致。显微硬度与空位浓度的关系可近似表示为HV=1.922+2.179CVac1/2。  相似文献   

18.
蒋贵荣  罗桂烈 《广西科学》2003,10(3):179-182
建立一类具有强迫项的二阶非线性泛函微分方程[p(t,x(t)x'(t)]' f(t,x(t),x(g(t)),x'(t),x'(h(t)))=e(t)的振动准则,并讨论解的渐近性。  相似文献   

19.
超级电容器电极材料的结构设计   总被引:1,自引:0,他引:1  
超级电容器由于具有功率密度大和循环寿命长的优势受到了广泛的关注.电极材料是超级电容器的核心部分,是发展高性能超级电容器的关键要素.电极材料的组成、晶体结构、微纳结构形态等对其电化学性能具有重大影响.赝电容电极材料的性能与晶体内部的孔道结构密切相关,具有大孔道的电极材料其比容量明显高于只含有小孔道的电极材料.合理调控电极材料微纳结构形态如设计多孔结构、中空结构有利于增大电极的电化学活性表面,进而获得更多的电荷存储量,是提高储能性能的有效途径之一.将赝电容电极材料与导电基体复合生长可以提高材料整体的电导率,进而提高材料的比容量与倍率性能.通过对超级电容器电极材料结构的合理设计进而实现其储能性能的提高已经成为电化学储能领域的研究热点,对于推动超级电容器的发展具有重要意义.  相似文献   

20.
介绍了工业制备SiC的各种方法和近年来国内外生产SiC的新工艺及机械法制备SiC粉体技术.指出未来工业制备SiC材料的发展应侧重于对传统的Acheson冶炼工艺进行改进;扩大制备SiC材料的新工艺的生产规模;研究发明用廉价原料制备高性能的新型SiC材料的方法以及研究超细粉碎及分级技术制备多种SiC产品等.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号