首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we compare several multi‐period volatility forecasting models, specifically from MIDAS and HAR families. We perform our comparisons in terms of out‐of‐sample volatility forecasting accuracy. We also consider combinations of the models' forecasts. Using intra‐daily returns of the BOVESPA index, we calculate volatility measures such as realized variance, realized power variation and realized bipower variation to be used as regressors in both models. Further, we use a nonparametric procedure for separately measuring the continuous sample path variation and the discontinuous jump part of the quadratic variation process. Thus MIDAS and HAR specifications with the continuous sample path and jump variability measures as separate regressors are estimated. Our results in terms of mean squared error suggest that regressors involving volatility measures which are robust to jumps (i.e. realized bipower variation and realized power variation) are better at forecasting future volatility. However, we find that, in general, the forecasts based on these regressors are not statistically different from those based on realized variance (the benchmark regressor). Moreover, we find that, in general, the relative forecasting performances of the three approaches (i.e. MIDAS, HAR and forecast combinations) are statistically equivalent. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Studies have shown that small stock returns can be partially predicted by the past returns of large stocks (cross‐correlations), while a larger body of literature has shown that macroeconomic variables can predict future stock returns. This paper assesses the marginal contribution of cross‐correlations after controlling for predictability inherent in lagged macroeconomic variables. Macroeconomic forecasting models generate trading rule profits of up to 0·431% per month, while the inclusion of cross‐correlations increases returns to 0·516% per month. Such results suggest that cross‐correlations may serve as a proxy for omitted macroeconomic variables in studies of stock market predictability. Macroeconomic variables are more important than cross‐correlations in forecasting small stock returns and encompassing tests suggest that the small marginal contribution of cross‐correlations is not statistically significant. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
The availability of numerous modeling approaches for volatility forecasting leads to model uncertainty for both researchers and practitioners. A large number of studies provide evidence in favor of combination methods for forecasting a variety of financial variables, but most of them are implemented on returns forecasting and evaluate their performance based solely on statistical evaluation criteria. In this paper, we combine various volatility forecasts based on different combination schemes and evaluate their performance in forecasting the volatility of the S&P 500 index. We use an exhaustive variety of combination methods to forecast volatility, ranging from simple techniques to time-varying techniques based on the past performance of the single models and regression techniques. We then evaluate the forecasting performance of single and combination volatility forecasts based on both statistical and economic loss functions. The empirical analysis in this paper yields an important conclusion. Although combination forecasts based on more complex methods perform better than the simple combinations and single models, there is no dominant combination technique that outperforms the rest in both statistical and economic terms.  相似文献   

4.
Volatility forecasting remains an active area of research with no current consensus as to the model that provides the most accurate forecasts, though Hansen and Lunde (2005) have argued that in the context of daily exchange rate returns nothing can beat a GARCH(1,1) model. This paper extends that line of research by utilizing intra‐day data and obtaining daily volatility forecasts from a range of models based upon the higher‐frequency data. The volatility forecasts are appraised using four different measures of ‘true’ volatility and further evaluated using regression tests of predictive power, forecast encompassing and forecast combination. Our results show that the daily GARCH(1,1) model is largely inferior to all other models, whereas the intra‐day unadjusted‐data GARCH(1,1) model generally provides superior forecasts compared to all other models. Hence, while it appears that a daily GARCH(1,1) model can be beaten in obtaining accurate daily volatility forecasts, an intra‐day GARCH(1,1) model cannot be. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Several studies have tested for long‐range dependence in macroeconomic and financial time series but very few have assessed the usefulness of long‐memory models as forecast‐generating mechanisms. This study tests for fractional differencing in the US monetary indices (simple sum and divisia) and compares the out‐of‐sample fractional forecasts to benchmark forecasts. The long‐memory parameter is estimated using Robinson's Gaussian semi‐parametric and multivariate log‐periodogram methods. The evidence amply suggests that the monetary series possess a fractional order between one and two. Fractional out‐of‐sample forecasts are consistently more accurate (with the exception of the M3 series) than benchmark autoregressive forecasts but the forecasting gains are not generally statistically significant. In terms of forecast encompassing, the fractional model encompasses the autoregressive model for the divisia series but neither model encompasses the other for the simple sum series. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Following recent non‐linear extensions of the present‐value model, this paper examines the out‐of‐sample forecast performance of two parametric and two non‐parametric nonlinear models of stock returns. The parametric models include the standard regime switching and the Markov regime switching, whereas the non‐parametric are the nearest‐neighbour and the artificial neural network models. We focused on the US stock market using annual observations spanning the period 1872–1999. Evaluation of forecasts was based on two criteria, namely forecast accuracy and forecast encompassing. In terms of accuracy, the Markov and the artificial neural network models produce at least as accurate forecasts as the other models. In terms of encompassing, the Markov model outperforms all the others. Overall, both criteria suggest that the Markov regime switching model is the most preferable non‐linear empirical extension of the present‐value model for out‐of‐sample stock return forecasting. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
We use real‐time macroeconomic variables and combination forecasts with both time‐varying weights and equal weights to forecast inflation in the USA. The combination forecasts compare three sets of commonly used time‐varying coefficient autoregressive models: Gaussian distributed errors, errors with stochastic volatility, and errors with moving average stochastic volatility. Both point forecasts and density forecasts suggest that models combined by equal weights do not produce worse forecasts than those with time‐varying weights. We also find that variable selection, the allowance of time‐varying lag length choice, and the stochastic volatility specification significantly improve forecast performance over standard benchmarks. Finally, when compared with the Survey of Professional Forecasters, the results of the best combination model are found to be highly competitive during the 2007/08 financial crisis.  相似文献   

8.
Multifractal models have recently been introduced as a new type of data‐generating process for asset returns and other financial data. Here we propose an adaptation of this model for realized volatility. We estimate this new model via generalized method of moments and perform forecasting by means of best linear forecasts derived via the Levinson–Durbin algorithm. Its out‐of‐sample performance is compared against other popular time series specifications. Using an intra‐day dataset for five major international stock market indices, we find that the the multifractal model for realized volatility improves upon forecasts of its earlier counterparts based on daily returns and of many other volatility models. While the more traditional RV‐ARFIMA model comes out as the most successful model (in terms of the number of cases in which it has the best forecasts for all combinations of forecast horizons and evaluation criteria), the new model performs often significantly better during the turbulent times of the recent financial crisis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Since volatility is perceived as an explicit measure of risk, financial economists have long been concerned with accurate measures and forecasts of future volatility and, undoubtedly, the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model has been widely used for doing so. It appears, however, from some empirical studies that the GARCH model tends to provide poor volatility forecasts in the presence of additive outliers. To overcome the forecasting limitation, this paper proposes a robust GARCH model (RGARCH) using least absolute deviation estimation and introduces a valuable estimation method from a practical point of view. Extensive Monte Carlo experiments substantiate our conjectures. As the magnitude of the outliers increases, the one‐step‐ahead forecasting performance of the RGARCH model has a more significant improvement in two forecast evaluation criteria over both the standard GARCH and random walk models. Strong evidence in favour of the RGARCH model over other competitive models is based on empirical application. By using a sample of two daily exchange rate series, we find that the out‐of‐sample volatility forecasts of the RGARCH model are apparently superior to those of other competitive models. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
Ashley (Journal of Forecasting 1983; 2 (3): 211–223) proposes a criterion (known as Ashley's index) to judge whether the external macroeconomic variables are well forecast to serve as explanatory variables in forecasting models, which is crucial for policy makers. In this article, we try to extend Ashley's work by providing three testing procedures, including a ratio‐based test, a difference‐based test, and the Bayesian approach. The Bayesian approach has the advantage of allowing the flexibility of adapting all possible information content within a decision‐making environment such as the change of variable's definition due to the evolving system of national accounts. We demonstrate the proposed methods by applying six macroeconomic forecasts in the Survey of Professional Forecasters. Researchers or practitioners can thus formally test whether the external information is helpful. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
This study empirically examines the role of macroeconomic and stock market variables in the dynamic Nelson–Siegel framework with the purpose of fitting and forecasting the term structure of interest rate on the Japanese government bond market. The Nelson–Siegel type models in state‐space framework considerably outperform the benchmark simple time series forecast models such as an AR(1) and a random walk. The yields‐macro model incorporating macroeconomic factors leads to a better in‐sample fit of the term structure than the yields‐only model. The out‐of‐sample predictability of the former for short‐horizon forecasts is superior to the latter for all maturities examined in this study, and for longer horizons the former is still compatible to the latter. Inclusion of macroeconomic factors can dramatically reduce the autocorrelation of forecast errors, which has been a common phenomenon of statistical analysis in previous term structure models. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
We propose a method for improving the predictive ability of standard forecasting models used in financial economics. Our approach is based on the functional partial least squares (FPLS) model, which is capable of avoiding multicollinearity in regression by efficiently extracting information from the high‐dimensional market data. By using its well‐known ability, we can incorporate auxiliary variables that improve the predictive accuracy. We provide an empirical application of our proposed methodology in terms of its ability to predict the conditional average log return and the volatility of crude oil prices via exponential smoothing, Bayesian stochastic volatility, and GARCH (generalized autoregressive conditional heteroskedasticity) models, respectively. In particular, what we call functional data analysis (FDA) traces in this article are obtained via the FPLS regression from both the crude oil returns and auxiliary variables of the exchange rates of major currencies. For forecast performance evaluation, we compare out‐of‐sample forecasting accuracy of the standard models with FDA traces to the accuracy of the same forecasting models with the observed crude oil returns, principal component regression (PCR), and least absolute shrinkage and selection operator (LASSO) models. We find evidence that the standard models with FDA traces significantly outperform our competing models. Finally, they are also compared with the test for superior predictive ability and the reality check for data snooping. Our empirical results show that our new methodology significantly improves predictive ability of standard models in forecasting the latent average log return and the volatility of financial time series.  相似文献   

13.
A variety of recent studies provide a skeptical view on the predictability of stock returns. Empirical evidence shows that most prediction models suffer from a loss of information, model uncertainty, and structural instability by relying on low‐dimensional information sets. In this study, we evaluate the predictive ability of various lately refined forecasting strategies, which handle these issues by incorporating information from many potential predictor variables simultaneously. We investigate whether forecasting strategies that (i) combine information and (ii) combine individual forecasts are useful to predict US stock returns, that is, the market excess return, size, value, and the momentum premium. Our results show that methods combining information have remarkable in‐sample predictive ability. However, the out‐of‐sample performance suffers from highly volatile forecast errors. Forecast combinations face a better bias–efficiency trade‐off, yielding a consistently superior forecast performance for the market excess return and the size premium even after the 1970s.  相似文献   

14.
In this study we propose several new variables, such as continuous realized semi‐variance and signed jump variations including jump tests, and construct a new heterogeneous autoregressive model for realized volatility models to investigate the impacts that those new variables have on forecasting oil price volatility. In‐sample results indicate that past negative returns have greater effects on future volatility than that of positive returns, and our new signed jump variations have a significantly negative influence on the future volatility. Out‐of‐sample empirical results with several robust checks demonstrate that our proposed models can not only obtain better performance in forecasting volatility but also garner larger economic values than can the existing models discussed in this paper.  相似文献   

15.
We study the performance of recently developed linear regression models for interval data when it comes to forecasting the uncertainty surrounding future stock returns. These interval data models use easy‐to‐compute daily return intervals during the modeling, estimation and forecasting stage. They have to stand up to comparable point‐data models of the well‐known capital asset pricing model type—which employ single daily returns based on successive closing prices and might allow for GARCH effects—in a comprehensive out‐of‐sample forecasting competition. The latter comprises roughly 1000 daily observations on all 30 stocks that constitute the DAX, Germany's main stock index, for a period covering both the calm market phase before and the more turbulent times during the recent financial crisis. The interval data models clearly outperform simple random walk benchmarks as well as the point‐data competitors in the great majority of cases. This result does not only hold when one‐day‐ahead forecasts of the conditional variance are considered, but is even more evident when the focus is on forecasting the width or the exact location of the next day's return interval. Regression models based on interval arithmetic thus prove to be a promising alternative to established point‐data volatility forecasting tools. Copyright ©2015 John Wiley & Sons, Ltd.  相似文献   

16.
Volatility plays a key role in asset and portfolio management and derivatives pricing. As such, accurate measures and good forecasts of volatility are crucial for the implementation and evaluation of asset and derivative pricing models in addition to trading and hedging strategies. However, whilst GARCH models are able to capture the observed clustering effect in asset price volatility in‐sample, they appear to provide relatively poor out‐of‐sample forecasts. Recent research has suggested that this relative failure of GARCH models arises not from a failure of the model but a failure to specify correctly the ‘true volatility’ measure against which forecasting performance is measured. It is argued that the standard approach of using ex post daily squared returns as the measure of ‘true volatility’ includes a large noisy component. An alternative measure for ‘true volatility’ has therefore been suggested, based upon the cumulative squared returns from intra‐day data. This paper implements that technique and reports that, in a dataset of 17 daily exchange rate series, the GARCH model outperforms smoothing and moving average techniques which have been previously identified as providing superior volatility forecasts. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Empirical experiments have shown that macroeconomic variables can affect the volatility of stock market. However, the frequencies of macroeconomic variables are low and different from the stock market volatility, and few literature considers the low-frequency macroeconomic variables as input indicators for deep learning models. In this paper, we forecast the stock market volatility incorporating low-frequency macroeconomic variables based on a hybrid model integrating the deep learning method with generalized autoregressive conditional heteroskedasticity and mixed data sampling (GARCH-MIDAS) model to process the mixing frequency data. This paper firstly takes macroeconomic variables as exogenous variables then uses the GARCH-MIDAS model to deal with the problem of different frequencies between the macroeconomic variables and stock market volatility and to forecast the short-term volatility and finally takes the predicted short-term volatility as the input indicator into machine learning and deep learning models to forecast the realized volatility of stock market. It is found that adding macroeconomic variables can significantly improve the forecasting ability in the comparison of the forecasting effects of the same model before and after adding the macroeconomic variables. Additionally, in the comparison of the forecasting effects among different models, it is also found that the forecasting effect of the deep learning model is the best, the machine learning model is worse, and the traditional econometric model is the worst.  相似文献   

18.
The period of extraordinary volatility in euro area headline inflation starting in 2007 raised the question whether forecast combination methods can be used to hedge against bad forecast performance of single models during such periods and provide more robust forecasts. We investigate this issue for forecasts from a range of short‐term forecasting models. Our analysis shows that there is considerable variation of the relative performance of the different models over time. To take that into account we suggest employing performance‐based forecast combination methods—in particular, one with more weight on the recent forecast performance. We compare such an approach with equal forecast combination that has been found to outperform more sophisticated forecast combination methods in the past, and investigate whether it can improve forecast accuracy over the single best model. The time‐varying weights assign weights to the economic interpretations of the forecast stemming from different models. We also include a number of benchmark models in our analysis. The combination methods are evaluated for HICP headline inflation and HICP excluding food and energy. We investigate how forecast accuracy of the combination methods differs between pre‐crisis times, the period after the global financial crisis and the full evaluation period, including the global financial crisis with its extraordinary volatility in inflation. Overall, we find that forecast combination helps hedge against bad forecast performance and that performance‐based weighting outperforms simple averaging. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
Financial data often take the form of a collection of curves that can be observed sequentially over time; for example, intraday stock price curves and intraday volatility curves. These curves can be viewed as a time series of functions that can be observed on equally spaced and dense grids. Owing to the so‐called curse of dimensionality, the nature of high‐dimensional data poses challenges from a statistical perspective; however, it also provides opportunities to analyze a rich source of information, so that the dynamic changes of short time intervals can be better understood. In this paper, we consider forecasting a time series of functions and propose a number of statistical methods that can be used to forecast 1‐day‐ahead intraday stock returns. As we sequentially observe new data, we also consider the use of dynamic updating in updating point and interval forecasts for achieving improved accuracy. The forecasting methods were validated through an empirical study of 5‐minute intraday S&P 500 index returns.  相似文献   

20.
This paper examines the relative importance of allowing for time‐varying volatility and country interactions in a forecast model of economic activity. Allowing for these issues is done by augmenting autoregressive models of growth with cross‐country weighted averages of growth and the generalized autoregressive conditional heteroskedasticity framework. The forecasts are evaluated using statistical criteria through point and density forecasts, and an economic criterion based on forecasting recessions. The results show that, compared to an autoregressive model, both components improve forecast ability in terms of point and density forecasts, especially one‐period‐ahead forecasts, but that the forecast ability is not stable over time. The random walk model, however, still dominates in terms of forecasting recessions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号