首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents the surface cooling trend observed in spring along East Asia coast after the late 1990s, in contrast to the global warming trend. This surface cooling trend is comprehensible as it agrees well with the cooling of sea surface temperature (SST) in the northwestern Pacific and the weakening of 300 hPa East Asian jet (EAJ) during spring. Moreover, this cooling phenomenon has been shown to be related to the rapid decline of Arctic sea ice cover (SIC) in previous autumns. The Arctic SIC signals in previous autumns can continue in spring and act as enhanced moisture sources that support the increased snow cover in Siberia during spring. The increased Siberian snow cover possibly favors the southward invasion of cold air masses via strong radiative cooling and large-scale descending motion, which may contribute indirectly to the reduction of temperature in East Asia. In addition, three climate models that can reproduce well the East Asian spring surface cooling observed in the past predicted uncertainty in the spring temperature projection in the next decade.  相似文献   

2.
The relationship between winter sea surface temperature (SST) east of Australia and summer precipitation in the Yangtze River valley and a possibly related physical mechanism were investigated using observation data. It is found that winter SST east of Australia is correlated positively to summer precipitation in the Yangtze River valley. When the SST east of Australia becomes warmer in winter, the western Pacific subtropical high and the East Asian westerly jet tend to shift southward the following summer, concurrent with low-level southwesterly anomalies over eastern China. These conditions favor precipitation increase in the Yangtze River valley, whereas the opposite conditions favor precipitation decrease. The influence of winter SST east of Australia on East Asian summer atmospheric circulations may occur in two ways. First, by an anomalous SST signal east of Australia in winter that persists through the following summer, thus affecting East Asian atmospheric circulations via the inter-hemispheric teleconnection. Second, when the SST east of Australia is warmer in winter, higher SST appears simultaneously in the southwest Indian Ocean and subsequently develops eastward by local air-sea interaction. As a result, the SST in the Maritime Continent increases in summer, which may lead to an anomalous change in East Asian summer atmospheric circulations through its impact on convection.  相似文献   

3.
全球地表温度大气遥相关路径研究   总被引:2,自引:0,他引:2  
基于复杂网络方法,分析不同区域地表温度之间存在的相关关系及其时滞,建立了体现大气遥相关的全球地表温度网络,进而给出地表温度网络遥相关路径.研究表明:网络连接的空间距离在3 500和7 000 km处有1个峰值,这与大气Rossby波的1/2和1倍波长一致.地表温度网络中,影响传播的主导节点在北半球分布在东亚、向西延伸的北太平洋、美国东海岸及邻接的北大西洋地区;在南半球分布在50° S纬度带.遥相关现象在南半球比北半球更显著,典型遥相关路径与不同的环流作用有明确对应:1)北太平洋中部到墨西哥的连接反映了西风带的作用;2)北大西洋传播到非洲北部、格陵兰岛到里海的连接,均属于连接北大西洋到欧亚大陆的跨欧亚波列的一部分;3)俄罗斯喀拉海到北太平洋的连接与北大西洋涛动(NAO)密切关联;4)南半球的连接反映了大气西风带和Rossby波的影响.大气遥相关路径分析有利于深化对地表温度变化的认识,可为减缓气候全球变化提供理论基础.   相似文献   

4.
Observational study indicated that the summer precipitation over Eastern China experienced a notable interdecadal change around the late-1990s. Accompanying this interdecadal change, the dominant mode of anomalous precipitation switched from a meridional triple pattern to a dipole pattern, showing a "south-flood-north-drought" structure (with the exception of the Yangtze River Valley). This interdecadal change of summer precipitation over Eastern China was associated with circulation anomalies in the middle/upper troposphere over East Asia, such as changes in winds and corresponding divergence, vertical motion and moisture transportation (divergence), which all exhibit remarkable meridional dipole structures. Furthermore, on the internal dynamic and thermodynamic aspects, the present study investigated the influence of the midtroposphere zonal and meridional flow changes over East Asia on the interdecadal change around the late-1990s. Results suggested that, during 1999-2010, the East Asia subtropical westerly jet weakened and shifted poleward, forming a meridional dipole feature in anomalous zonal flow. This anomalous zonal flow, on one hand, induced changes in three teleconnection patterns over the Eurasian continent, namely the "Silk Road" pattern along the subtropical upper troposphere westerly jet, the East Asia/Pacific (EAP) pattern along the East Asian coast, and the Eurasia (EU) pattern along the polar jet; on the other hand, it brought about cold advection over Northern China, and warm advection over Southern China in the mid-troposphere. Through these two ways, the changes in the zonal flow induced descent over Northern China and ascent over Southern China, which resulted in the anomalous "south-flood-north-drought" feature of the summer precipitation over Eastern China during 1999-2010.  相似文献   

5.
The interannual-to-interdecadal relationship between the Pacific sea surface temperature (SST) and the northern hemispheric midlatitude's atmosphere represented by the circumpolar vortex was documented with the global oceanic and atmospheric reanalysis data of recent 50 years. Two covarying modes of the Pacific SST and northern circumpolar vortex anomalies during winter were examined using the singular value decomposition and wavelet analysis techniques. One is the interannual, ENSO-related mode and the other is the interdecadal, North Pacific SST-related mode with a period of around 20 years. The two modes exhibit distinct spatial structures. For the interannual mode, the SST anomaly is characterized by a typical ENSO pattern with the principal signature in the tropical eastern Pacific and secondary one in the central North Pacific, while the atmospheric anomaly is regional, characterized by a Pacific-North American pattern. For the inter- decadal mode, large SST anomaly is located in the central North Pacific, while the atmospheric anomaly is zonally global, associated with the midlatitute's standing long-wave variations. When the central North Pacific is colder, the long-wave is stronger, and vice versa. Further investigations suggest that the interdecadal mode could involve an interaction between "two oceans and an atmosphere".  相似文献   

6.
不同平均强度热盐环流的年代际波动特征   总被引:2,自引:0,他引:2       下载免费PDF全文
基于美国国家大气研究中心的CCSM3(community climate system model version 3)模式,对淡水扰动试验下不同平均强度热盐环流(thermohline circulation,THC)的年代际波动特征及北大西洋气候响应特征进行研究。结果表明,百年以上尺度的THC变化对其年代际尺度波动产生显著影响,高平均强度下THC的年代际波动周期更长、更显著。对不同平均强度下北大西洋海、气要素与THC在年代际尺度上的相关分布进行分析,发现在高平均强度下,THC与海表温度(sea surface temperature,SST)的相关呈现为经向三核型分布,与海平面气压(sea lever pressure,SLP)的相关呈现为类NAO(North Atlantic oscillation)分布,而在低平均强度下,则不存在这2种模态分布;同时,在不同平均强度下,THC与各要素间的相关程度也不同,高平均强度下相关程度更高。  相似文献   

7.
Forty-two climate models participating in the Coupled Model Intercomparison Project Phases 3 and 5 were first evaluated in terms of their ability to simulate the present climatology of the East Asian winter (December-February) and summer (June-August) monsoons. The East Asian winter and summer monsoon changes over the 21st century were then projected using the results of 31 and 29 reliable climate models under the Special Report on Emissions Scenarios (SRES) mid-range A1B scenario or the Representative Concentration Pathways (RCP) mid-low-range RCP4.5 scenario, respectively. Results showed that the East Asian winter monsoon changes little over time as a whole relative to the reference period 1980-1999. Regionally, it weakens (strengthens) north (south) of about 25°N in East Asia, which results from atmospheric circulation changes over the western North Pacific and Northeast Asia owing to the weakening and northward shift of the Aleutian Low, and from decreased north- west-southeast thermal and sea level pressure differences across Northeast Asia. In summer, monsoon strengthens slightly in East China over the 21st century as a consequence of an increased land-sea thermal contrast between the East Asian continent and the adjacent western North Pacific and South China Sea.  相似文献   

8.
Effects of autumn-winter Arctic sea ice on winter Siberian High   总被引:18,自引:0,他引:18  
The intensity of the winter Siberian High has significantly negative correlations with Arctic sea ice concentration anomalies from the previous autumn to winter seasons in the Eastern Arctic Ocean and Siberian marginal seas. Our results indicate that autumn-winter Arctic sea ice concentration and concurrent sea surface temperature anomalies are responsible for the winter Siberian High and surface air temperature anomalies over the mid-high latitudes of Eurasia and East Asia. Numerical experiments also support this conclusion, and consistently show that the low sea ice concentration causes negative surface air temperature anomalies over the mid-high latitudes of Eurasia. A mechanism is proposed to explain the association between autumn-winter sea ice concentration and winter Siberian High. Our results also show that September sea ice concentration provides a potential precursor for winter Siberian High that cannot be predicted using only tropical sea surface temperatures. In the last two decades (1990–2009), a strengthening trend of winter Siberian High along with a decline trend in surface air temperature in the mid-high latitudes of the Asian Continent have favored the recent frequent cold winters over East Asia. The reason for these short-term trends in winter Siberian High and surface air temperature are discussed.  相似文献   

9.
利用美国国家环境预报中心(National Centers for Environmental Prediction,NCEP)/美国国家大气研究中心(National Center for Atmospheric Research,NCAR)再分析资料,采用判定和追踪反气旋的客观方法统计分析了1948~2016年北半球冬季温带反气旋活动特征。研究发现,北半球温带反气旋主要活动在中东部的北太平洋、东北大西洋、北美的沿落基山脉东部和美国东部、欧亚的环地中海、伊朗高原、青藏高原以北且贝加尔湖以南地区。海洋上、北美洲和环地中海地区上的反气旋夏季频数最高,而伊朗高原、青藏高原以北且贝湖以南的反气旋均冬季最多。海洋上的反气旋生成区域分布较分散,且主要向偏东方向移动、发展,且具有季节变化。相比于海洋,大陆上反气旋生成的纬度较低,主要向东南方移动、发展。北美大陆上的反气旋夏季生成的较多,冬季移动范围较广。北半球反气旋年平均过程数呈缓慢上升趋势。夏季过程数最多,且从1970年开始呈上升趋势。欧亚地区的反气旋过程数最多,其次太平洋,大西洋最少,但是同一个区域的四季相差较小。反气旋的中心气压大值区的形态和高频区的分布形态相似,且中心气压有明显的季节变化。四季中冬季反气旋最强。秋冬季节是欧亚地区的反气旋最强,大西洋的最弱。春夏季大西洋的反气旋最强,欧亚地区的最弱。四季均是欧亚地区的反气旋的平均纬度较低,且冬季最低。北美地区的反气旋除秋季均是移动纬度范围最大的。反气旋数随生命史的变长而急剧下降,90%左右的反气旋的生命史在4 d内,四季均是大洋上的反气旋生命史较大陆上的长。  相似文献   

10.
An interdecadal shift in summer (June―August) sea surface temperature (SST) variations during the period of 1968―2002 was identified in the late 1980s, which is characterized by a phase alternating from negative to positive phases of the leading mode of the empirical orthogonal function (EOF) analysis of the summer monthly mean SST in the Pacific domain 100°―180°E and 0°―40°N, accounting for 30.5% of the total variance. During the period of 1968―1987, the leading mode with a mean negative phase state (mean standard deviation = ?0.586) controlled SST variability in the western North Pacific. Correspondingly, negative SST anomalies occupied the western North Pacific south of Japan and Chinese marginal seas. During the period of 1988―2002, the leading mode shifted to its strong positive polarity (mean standard deviation = 0.781), thus positive SST anomalies appeared in the western North Pacific. Accompanied by the interdecadal shift in summer mean SST, summer mean rainfall increased in southern and southeastern China during the late period, particularly in southeastern China where increase in summer mean rainfall exceeded 40 mm, at the 0.05 significance level.  相似文献   

11.
对1951-1999年中国夏季江淮流域降水异常与海温异常关系的分析表明,前期及同期各季节三大洋海表温度异常(SSTA)与长江流域降水异常的关系是非常显著的,而对淮河流域降水异常总体上的影响较小,前期冬季SSTA的影响显著区主要有:热带印度洋、黑潮、热带中东太平洋和大西洋,各关键区海温异常对亚洲夏季风的影响特征为:当前期冬季赤道印度洋、黑潮、赤道大西洋和热带东太平洋海表温度异常升高(降低),当年夏季印度西南季风和东亚热带辐合带减弱(加强),副热带高压位置偏南(北),副热带辐合带加强(减弱),长江流域易发生洪涝(干旱),相关显著性分析表明,前冬赤道印度洋和黑潮区的海温异常对中国夏季降水的影响更为显著。  相似文献   

12.
Based on monthly precipitation and monthly mean surface air temperature (SAT),the dry/wet trends and shift of the central part of North China and their relationship to the Pacific Decadal Oscillation (PDO) from 1951 to 2005 have been analyzed through calculating surface wetness index (SWI). The results indicate that there was a prominent drying trend and an abrupt change in the analysis period. A per-sistent warming period with less precipitation from the mid and late 1970s to present was found,and a shift process exists from the wet to the dry in the central part of North China during 1951-2005. The transition is located in the mid to late 1970s,which should be related to the shift variation of large-scale climate background. The correlation analysis has brought about a finding of significant correlativity between PDO index (PDOI) and SAT,precipitation and SWI in this region. The correlation exhibits that the positive phase of PDOI (warm PDO phase) matches warming,less precipitation and the drought period,and the negative PDOI phase corresponds to low SAT,more precipitation and the wet period. The duration of various phases is more than 25 years. The decadal variation of sea surface temperature (SST) in the North Pacific Ocean is one of the possible causes in forming the decadal dry/wet trend and shift of the central part of North China.  相似文献   

13.
Based on observed daily precipitation data, monthly gridded radiosonde upper air temperature and sea surface temperature data from the UK Met Office Hadley Centre, monthly surface air temperature from the Climatic Research Unit at the University of East Anglia and the NCEP/NCAR monthly reanalysis data, this study investigates the spatial and temporal variations of light rain events over China and the mid-high latitudes of the Northern Hemisphere during 1961-2010, and discusses the relationship between the change of light rain events and atmospheric stability, sea surface temperature and atmospheric circulation. The light rain events over East China display a decreasing trend of 3.0%/10 a in summer and winter half years. Over Northwest China, an increasing trend of 4.1%/10 a is found in winter half years, but there is no trend in summer half years. Using empirical orthogonal function (EOF) analysis, it is found that the first two principal components of light rain events over the mid-high latitudes of the Northern Hemisphere show long time scale variations in summer and winter half years. The first EOF modes (EOF1s) for summer and winter half years both depict a long-term increase in light rain events over North America and Southern Europe as well as Northwest China (except in summer half years), and a long-term decrease over most of the Eurasia (Central Europe, Eastern Europe, North Asia and East China). The second EOF mode (EOF2) for summer half year shows that light rain events increase over North America, Southern Europe and South China, but decrease over Eurasia north of 45°N from 1961 to early 1980s, while the trends reverse from late 1980s to 2010. The second EOF mode (EOF2) for winter half years indicates that light rain events increase over North America and South and North China, but decrease over Eurasia north of 40°N from 1961 to early 1980s, while the trends reverse from late 1980s to 2009. Correlation analysis and linear regression analysis suggest that EOF1s may be related to the change in atmospheric static stability associated with global warming, and EOF2s are possibly linked to the AMO.  相似文献   

14.
运用相关分析和滑动相关方法,分析了江淮流域5个代表站1903-2000年梅雨期雨量的变化特征及其与太平洋海温的相关关系及年代际差异.结果表明,江淮地区梅雨期雨量在近百年来存在明显的年际和年代际变化特征.通过分析梅雨期雨量与太平洋海温的年代际相关特征发现,江淮流域梅雨期雨量与前期及同期太平洋海温关系密切,前一年冬季及梅雨期东北太平洋海温与江淮流域梅雨期雨量负相关,在热带东太平洋的Nino1 2区两者正相关显著,同年春季西太平洋部分海域海温与江淮流域梅雨期雨量正相关.从年际相关分析发现,前一年冬季太平洋海温与梅雨期雨量正相关,同年春季以及梅雨期两者相关不明显.通过分析年代际差异发现,江淮流域梅雨期雨量与前期及同期热带太平洋关键区海温的21a滑动相关存在显著的年代际差异,这种差异与海温的21a滑动平均的年代际冷暖背景关系密切,热带太平洋海温关键区前一年冬季冷海温背景下,梅雨期雨量同海温正相关显著,同年春季暖海温背景下,两者之间负相关显著,而江淮流域梅雨期雨量同中国近海海温之间(从冬季到梅雨期)维持显著的正相关,与该区海温冷暖背景的关系则并不明显.  相似文献   

15.
This paper analyzes the large-scale atmospheric circulation characteristics of anomalous cases of January temperatures that occurred in Northeast China during 1960-2008 and precursory oceanic conditions.The January monthly mean surface air temperature(SAT) anomalies and the duration of low temperature are used to define temperature anomaly cases.The anomalous cyclonic circulation over northeast Asia strengthens the northerly flow in cold Januarys,while the anomalous anticyclonic circulation weakens the northerly flow in the warm Januarys.The negative(positive) North Pacific sea surface temperature anomaly(SSTA) and increased(decreased) sea ice concentration in the Barents-Kara seas in the preceding month are probably linked to the cyclonic(anticyclonic) circulation pattern over northeast Asia in the cold(warm) cases.Further analyses indicate that the preceding oceanic conditions play distinct roles in the SAT anomalies over Northeast China on different time scales.Strong relationships exist between North Pacific SSTA and the SAT in Northeast China on the interannual time scale.On the other hand,the sea ice concentration is more closely associated with the interdecadal variations of SAT in Northeast China.  相似文献   

16.
The International Geosphere Biosphere Program (IGBP), which promotes better understanding of the living environment, was initiated in the early 1990s. IGBP and other programs have uncovered much evi-dence that the Earth system is complex and nonlinear, ex…  相似文献   

17.
The East Asian winter monsoon: re-amplification in the mid-2000s   总被引:1,自引:0,他引:1  
Based on several reanalysis and observational datasets,this study demonstrates that the East Asian winter monsoon(EAWM)recovered from its weak epoch and reamplified in the mid-2000s.Accordingly,East Asia has experienced more cold winters and significant negative surface air temperature anomalies during the recent strong EAWM epoch spanning the period 2004–2012.The associated cooling was mainly located over inland northern East Asia with a west–east orientation.The cooling generally coincided with negative winter temperature trends in eastern Eurasia in the last two decades,possibly contributing to the observed regional cooling trend when the global mean temperature is still trending up.Enhanced wintertime blocking activity around the Ural mountain region and diminished Arctic sea ice concentration in the previous September are suggested to be the responsible internal atmospheric process and external driver for the recent re-amplification of the EAWM,respectively.  相似文献   

18.
利用耦合模式CESM1.0, 研究青藏高原地形对非洲北部降水的影响。敏感性试验结果表明, 去掉青藏高原地形后, 首先, 大气环流迅速做出调整, 出现自热带大西洋向东北方向至北非的水汽输送异常和自印度洋向西至北非的水汽输送异常, 造成北非大气水汽含量增加和水汽辐合增强, 降水增多。然后, 当海洋环流调整到准平衡态时, 北大西洋海表温度降低, 南大西洋海表温度升高, 地表大气温度也发生相应的变化。在南北温度梯度的影响下, 原本由热带大西洋向北非的水汽输送发生转向, 导致北非的水汽含量减少和水汽辐合减弱, 使得降水比前一阶段减少。即便如此, 在没有青藏高原的试验中, 当海洋环流调整到平衡态时, 北非大部分区域水汽辐合仍然强于有青藏高原的真实地形试验, 区域平均降水也增多。结果表明, 青藏高原的隆升可能在一定程度上加剧了北非的干旱化。  相似文献   

19.
In July 2013, the Jianghuai–Jiangnan region of China experienced a persistent extreme high temperature,and the surface air temperature(SAT) over many areas of the region set a new record, which had a profound impact on people's lives. This study explored the possible mechanism for this extreme climate phenomenon. The results show that the sea surface temperature(SST) over the midNorth Atlantic in July 2013 was the warmest observed over the past 160 years. The strong anomaly of the SST connects to the East Asian upper level westerly and western Pacific subtropical high(WPSH) via the teleconnection wave train and further contributes to the SAT variability over the Jianghuai–Jiangnan region; this connection could be one possible mechanism for the formation of the recordbreaking extreme hot event(EHE) over the Jianghuai–Jiangnan region in July 2013. In addition, for the EHE over the Jianghuai–Jiangnan region, the role of the WPSH was generally emphasised. This study found that the variability of the upper level westerly over the Jianghuai–Jiangnan region is also an important climate factor impacting the SAT of the region. In particular, the record-breaking weakness of the upper level westerly corresponded to the record-breaking SAT over the Jianghuai–Jiangnan region in July 2013. These results indicate that the role of the upper level westerly should be emphasised in addition to the WPSH, according to both the variability in the summer air temperature and the EHE over the Jianghuai–Jiangnan region.  相似文献   

20.
Based on geographic division over the western North Pacific (WNP), the interdecadal relationships between summer monsoon, sea surface temperature (SST) and tropical cyclones activity (including number, track and intensity) are examined. In the past several decades, the western Pacific subtropical high (WPSH) and tropical westerlies contribute to the interdecadal variation of TC number in the northwest and southeast of WNP respectively. The increased TC occurrence density to the east of Philippines related to TC track appears during the 1990s, in terms of both steer flow induced by WPSH and genesis location. From the interdecadal viewpoint, the tendency of TC intensity, measured by averaged accumulated cyclone energy, does well agree with that of SST, implying that SST plays an important role in TC intensity. Supported by Special Scientific Research Project for Public Interest (Grant No. GYHY200806009) and National Basic Research Program of China (Grant No. 2009CB421505)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号