首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 631 毫秒
1.
华南春旱特征及其与水汽输送的关系   总被引:4,自引:0,他引:4  
利用1979-2005年华南47个基准站降水资料及由NCAR/NCEP II再分析资料计算所得的水汽输送通量资料,对华南春季降水特征及其与水汽输送的关系进行研究,结果表明:华南春季降水可以110.5°E为界划分为两个区域,以东区域为华南I区,以西区域为华南II区。I区降水具有显著的下降趋势,即干旱趋势显著;而II区降水下降趋势要弱得多,未超过信度检验。此外,I区降水在1994年发生突变,由多雨期突然跃变到干旱期。华南春季水汽主要来源于南海和西太平洋,并经中南半岛转向输送到华南,当南海中北部的偏南水汽输送偏弱(强)时,I区降水偏少(多),I区偏旱(涝),当南海西南部-中南半岛南部的偏南水汽输送偏弱(强)时,II区降水偏少(多),II区偏旱(涝)。  相似文献   

2.
江苏省植被动态演变规律及其与极端气候事件的关系   总被引:2,自引:0,他引:2  
利用1982—2013年江苏省植被归一化指数(NDVI)和13个气象站的气温和降水数据,采用SPI标准化降水指数以及PDSI干旱指数模型,研究江苏省植被动态的演变规律及其与旱涝的关系。结果发现:①江苏全省平均的NDVI值整体呈缓慢上升趋势,但上升趋势不明显,其中苏北地区植被覆盖增加趋势明显,远高于全省平均水平,而苏南地区植被覆盖有减小趋势; ②江苏地区多年平均NDVI值有明显的季节变化,冬季的NDVI值为全年最低,春季NDVI值不断增加,到8月份达到最高,之后不断下降; ③极端干旱和洪涝对江苏省NDVI值有显著影响,干旱或洪涝年份的NDVI值明显小于正常年份,并且洪涝年份受影响更为明显。春季极端干旱对江苏省NDVI值影响较大,而夏季洪涝事件对江苏省NDVI的影响较大。  相似文献   

3.
An ensemble soil moisture dataset was produced from 11 of 25 global climate model (GCM) simulations for two climate scenarios spanning 1900 to 2099; this dataset was based on an evaluation of the spatial correlation of means and trends in reference to soil moisture simulations conducted using the community land model driven by observed atmospheric forcing. Using the ensemble soil moisture index, we analyzed the dry-wet climate variability and the dynamics of the climate zone boundaries in China over this 199-year period. The results showed that soil moisture increased in the typically arid regions, but with insignificant trends in the humid regions; furthermore, the soil moisture exhibited strong oscillations with significant drought trends in the transition zones between arid and humid regions. The dynamics of climate zone boundaries indicated that the expansion of semiarid regions and the contraction of semi-humid regions are typical characteristics of the dry-wet climate variability for two scenarios in China. During the 20th century, the total area of semiarid regions expanded by 11.5% north of 30°N in China, compared to the average area for 1970–1999, but that of semi-humid regions decreased by approximately 9.8% in comparison to the average for the period of 1970–1999, even though the transfer area of the humid to the semi-humid regions was taken into account. For the 21st century, the dynamics exhibit similar trends of climate boundaries, but with greater intensity.  相似文献   

4.
基于1979—2012年土壤湿度、地表平均温度、土壤蒸散量、土壤类型格点数据构建骤旱(flash drought, FD)指数,分析中国东部季风气候区骤旱的时空演变特征,揭示不同土壤类型对骤旱响应规律的空间异质性.研究结果表明:1)东部季风区骤旱次数与时间总体呈“南少北多”格局,气温变化是影响骤旱发生的主导性因素;东北部与中部发生的骤旱时间和频率最高.2)年际骤旱次数呈不显著上升趋势,区域内骤旱年平均发生总次数为40~50次,总时间为520~670 d,最大发生次数为56次,发生频率>0.04.从平均时间上看,淋溶土、初育土、人为土和铁铝土对骤旱的响应最为强烈.3)不同土壤类型骤旱年际变化分为2类,第1类分布在北部地区,在夏季达到高峰,春秋季几乎不发生;第2类分布在南部地区,在夏季达到高峰,且伴随着春秋季小高峰.   相似文献   

5.
The spring soil moisture and the summer rainfall in eastern China   总被引:7,自引:0,他引:7  
The relation between the soil moisture in spring and the rainfall in summer in eastern China is investi- gated. Results show that the summer rainfall in eastern China is closely related to the spring soil moisture in the area from North China to the lower reaches of Yangtze River (NCYR). When spring soil moisture anomalies over NCYR are positive, the summer precipitation exhibits positive anomalies in Northeast China and the lower reaches of Yangtze River, and negative anomalies in southern China and North China. The higher soil moisture over NCYR cools land surface and reduces the land-sea tem- perature gradient, which weakens East Asian summer monsoon. The western Pacific Subtropical High (WPSH) is located to the south and shifts westward, resulting in more rainfall in the lower reaches of Yangtze River and less in southern China and North China.  相似文献   

6.
全球和中国降水、旱涝变化的检测评估   总被引:2,自引:0,他引:2  
持续严重干旱和暴雨洪涝对全球社会经济发展有明显影响,近些年来随着观测记录的加长和对更多的复杂气候模式和人为温室气体排放情景的观察统计,对全球和中国的降水与旱涝变化评估和预估有了更深入研究,注意到20世纪全球和中国降水有多年代际波动,近几十年洪涝和干旱在局部地区频繁发生,如我国的长江流域多发生洪涝,华北地区持续干旱。预估21世纪由于人为温室气体排放增加和全球变暖,全球和中国的降水将可能增加,尤以北半球中高纬度大部分地区降水强度增加明显,而中低纬度部分地区干旱日数将可能增加,应该引起水利、农业、林业、交通、卫生等有关部门的关注。  相似文献   

7.
Clear evidence provided by the singular value decomposition (SVD) analysis to the normalized difference vegetation index (NDVI) and precipitation data identifies that there exists a sensitive region of vegetation-climate interaction located in the transitional zone over northern China and its surrounding areas, where the vegetation cover change has the most significant influence on summer precipitation over China.““ Comparison of reanalysis data with station data provides a good method to assess the impacts of land use change on surface temperature, and the most obvious contribution of land use change may be to lead to notable warming over northern China in the interdecadal time scale. Based on the new statistical results, a high-resolution regional integrated environmental model system (RIEMS) is employed to investigate the effects of land surface degradation over the transitional zone and its surrounding areas (northern China and southern Mongolia) on the regional climate. Land degradation results in the decreases in precipitation over northern and southern China, and the increase in between, and increased and decreased temperature over vegetation change areas and the adjacent area to the south, respectively. Not only would it change the surface climate, but also bring the significant influence on the atmospheric circulation. Both the surface climate and circulation changes generally agree to the observed interdecadal anomalies over the last five decades. These integrated statistical and simulated results imply that land surface degradation over the transitional zone in northern China and its surrounding areas could be one of the main causes responsible for the climate anomalies over China, especially the drought over northern China.  相似文献   

8.
Large proglacial lakes cool regional summer climate because of their large heat capacity, and have been shown to modify precipitation through mesoscale atmospheric feedbacks, as in the case of Lake Agassiz. Several large ice-dammed lakes, with a combined area twice that of the Caspian Sea, were formed in northern Eurasia about 90,000 years ago, during the last glacial period when an ice sheet centred over the Barents and Kara seas blocked the large northbound Russian rivers. Here we present high-resolution simulations with an atmospheric general circulation model that explicitly simulates the surface mass balance of the ice sheet. We show that the main influence of the Eurasian proglacial lakes was a significant reduction of ice sheet melting at the southern margin of the Barents-Kara ice sheet through strong regional summer cooling over large parts of Russia. In our simulations, the summer melt reduction clearly outweighs lake-induced decreases in moisture and hence snowfall, such as has been reported earlier for Lake Agassiz. We conclude that the summer cooling mechanism from proglacial lakes accelerated ice sheet growth and delayed ice sheet decay in Eurasia and probably also in North America.  相似文献   

9.
利用耦合陆面过程模式CLM3的全球大气环流模式NCAR CAM3进行2组1979~2000年5~8月的集合试验,研究了表层土壤湿度对中国西北地区夏季气候年际变率模拟的影响。结果表明:在相同海温强迫条件下,采用年际变化的表层土壤湿度(ISSM)时,CAM3模式对于夏季西北地区气温和降水年际变率的模拟能力明显好于采用气候态的表层土壤湿度(CSSM)。计算表明,1979~2000年CSSM试验和ISSM试验模拟的西北地区夏季气温距平与ERA40资料的相关系数分别为0.60和0.65; CSSM试验模拟的西北地区夏季降水距平与CMAP资料的相关系数仅为0.29,而ISSM试验模拟结果与CMAP资料的相关系数为0.48。在相同海温强迫条件下,ISSM试验比CSSM试验能更好地模拟出中国西北地区夏季降水年际变率。  相似文献   

10.
中国是一个水旱灾害发生频繁的国家.季风气候是水旱灾害多发和分布广泛的主要原因;独特的阶梯状地形地貌也加剧我国空间上降水的不均匀,导致了西北多干旱、南方多雨涝的格局,进而会影响我国次一级的灾害发生.全球变暖和周边海气振荡周期变化导致的气候异常加剧我国降水量分布的时空差异,是引发各级水旱灾害的主要胁迫因子.  相似文献   

11.
12.
 20世纪中国长江流域3次特大洪涝均发生在厄尔尼诺次年夏季。介绍了短期气候预测的科学原理,回顾了人们对气候变化机理的探索历程,总结了汛期降水预测取得的最新进展和面临的挑战;最后分析2015年发生的超强厄尔尼诺事件给2016年中国汛期降水带来的影响。  相似文献   

13.
我国南北方的水资源存在严重的地区不平衡差异.总体来说,北方地区大部分地区属于缺水干旱地区,而南方地区的水资源基本上是供大于求.20世纪80年代以来,随着社会经济的快速发展,加之气候变化的影响,北方地区水资源短缺的矛盾日趋严重,缺水所造成的损失和环境的恶化更为明显.北方的降水减少和温度的增加是我国气候变化的总趋势,由此引起的北方干旱化严重影响了我国北方工农业生产和人民的生活,而南水北调是解决这一问题的关键性措施.南水北调可以缓解北方地区不同程度的缺水矛盾,使水资源问题不再成为经济的制约因素,从而加快北方地区的发展速度,缓解环境的恶化.南水北凋工程实施后,受水地区的土壤含水量、地下水以及地表植被都会发生不同程度的变化,利用数值模拟的方法研究这些变化对局地气象环境的影响.所运用的模式是美国NCAR/PSU联合研制的中尺度气象模式MM5,在其中我们耦合了陆面过程模式OSULSM.研究表明,由于土壤含水量的增加,北方地区的蒸发量也相应增加,调水量的50%以上被蒸发,同时北方地区的降雨量增加、地面温度降低。  相似文献   

14.
Based on a database of 106 annually resolved tree-ring chronologies and 244 Palmer Drought Severity Index(PDSI)grid data,we attempted to reconstruct gridded spatial drought patterns in each year over the past four centuries in the arid,semiarid,and semihumid East Asia.The results showed that these regions mainly experienced drought events during the periods from AD 1601 to AD 1652,AD 1680 to AD 1718,AD 1779 to AD 1791,AD 1807 to AD 1824,AD 1846 to AD 1885,and AD 1961 to AD 1999.In the middle of the 16th century,severe droughts occurred mainly in North China;during the period from AD 1876 to AD 1878,droughts occurred in most parts of northern China;and from the 1920s to 1940s,catastrophic drought events spread across almost all of northern China and Mongolia.These historical drought events caused severe ecological and environmental problems and substantially affected the development of human society.In these regions,temperature and summer monsoon precipitation are the main factors influencing drought events.In western areas,PDSI and temperature exhibit a close relationship,whereas in eastern areas,summer monsoon rainfall is the dominant factor influencing variations in PDSI.  相似文献   

15.
 中国南北方水土资源配置不合理,南方水多耕地少,北方水少耕地多。南水北调工程通过跨流域的水资源合理配置,大大缓解北方水资源严重短缺问题。本文用两层嵌套的中尺度气象模式MM5及其耦合的陆面过程模式,研究调水对局地气象环境的影响。研究表明,实施南水北调后,春季和夏季北方地区土壤含水量增加、累积降水量增加,地表温度降低。夏季的土壤含水量、地表温度、累积降水量的变化幅度明显大于春季。另外干燥的土壤环境条件,对气象环境的改变更明显。春季和夏季土壤含水量变化的区域、地表温度的降低的地区都不只局限于南水北调受水区,而是散布到周边地区。另外还可以看出,在土壤含水量未改变的地区有明显的降雨量增加,最大降雨量增加区域与土壤水份的变化中心区域不重合。  相似文献   

16.
The 1997-1998 warm event in the South China Sea   总被引:3,自引:0,他引:3  
A strong warm event happens during spring 1997 to spring 1999 in the South China Sea. Its intensity and duration show that it is the strongest event on the record over the past decades. It also corresponds with the severe flood over the valley of the Yangtze River and a couple of marine environmental events. This note addressed the evolution process by using several data sets, such as sea surface temperature, height and wind stress in addition to subsurface temperature. The onset of the warm event almost teleconnects with the El Ni?o event in the tropical Pacific Ocean. Summer monsoon is stronger and winter monsoon is weaker in 1997 so that there are persistent westerly anomalies in the South China Sea. During the development phase, the warm advection caused by southerly anomalies is the major factor while the adjustment of the thermocline is not obvious. Subsequently, the southerly anomalies decay and even northerly anomalies appear in the summer of 1998 resulting from the weaker than normal summer monsoon in 1998 in the South China Sea. The thermocline develops deeper than normal, which causes the downwelling pattern and the start of the maintaining phase of the warm event. Temperature anomalies in the southern South China Sea begin to decay in the winter of 1998-1999 and this warm event ends in the May of 1999.  相似文献   

17.
The 1997–1998 warm event in the South China Sea   总被引:3,自引:0,他引:3  
A strong warm event happens during spring 1997 to spring 1999 in the South China Sea. Its intensity and duration show that it is the strongest event on the record over the past decades. It also corresponds with the severe flood over the valley of the Yangtze River and a couple of marine environmental events. This note addressed the evolution process by using several data sets, such as sea surface temperature, height and wind stress in addition to subsurface temperature. The onset of the warm event almost teleconnects with the El Niño event in the tropical Pacific Ocean. Summer monsoon is stronger and winter monsoon is weaker in 1997 so that there are persistent westerly anomalies in the South China Sea. During the development phase, the warm advection caused by southerly anomalies is the major factor while the adjustment of the thermocline is not obvious. Subsequently, the southerly anomalies decay and even northerly anomalies appear in the summer of 1998 resulting from the weaker than normal summer monsoon in 1998 in the South China Sea. The thermocline develops deeper than normal, which causes the downwelling pattern and the start of the maintaining phase of the warm event. Temperature anomalies in the southern South China Sea begin to decay in the winter of 1998–1999 and this warm event ends in the May of 1999.  相似文献   

18.
云垂直结构是影响大气辐射的重要参数,其时空分布是影响全球气候变化的关键组成部分.本文利用星载激光雷达CALIOP的1 km云层产品,计算了中国及周边地区(0-55°N,70-140°E)云的出现概率,对不同地区、不同季节、不同高度单层云的出现概率做了对比分析.结果表明:云的出现概率表现出明显的地区差异,蒙古高原和印度半岛北部少云,热带海域和中国南方多云,多数地区夜间云出现概率略高于白天;除蒙古高原和印度半岛北部以外,多数地区单层云比多层云更常见;多数地区高云占单层云的比例最大,而中国大陆南部单层的中云较常见,西太平洋北部海域常被单层的低云覆盖;夏秋两季云出现概率普遍大于春冬两季,尤其印度半岛北部的云主要出现在夏季;蒙古高原和印度半岛北部单层云少于多层云,冬季尤其明显,而中国西南地区东部全年单层云更常见;夏季单层的高云占全年单层云的比例最大,青藏高原部分地区超过35%,这与其地形特征和夏季对流活动旺盛有关.  相似文献   

19.
Using meteorological observations, proxies of precipitation and temperature, and climate simulation outputs, we synthetically analyzed the regularities of decadal-centennial-scale changes in the summer thermal contrast between land and ocean and summer precipitation over the East Asian monsoon region during the past millennium; compared the basic characteristics of the East Asian summer monsoon (EASM) circulation and precipitation in the present day, the Little Ice Age (LIA) and the Medieval Warm Period (MWP); and explored their links with solar irradiance and global climate change. The results indicate that over the last 150 years, the EASM circulation and precipitation, indicated by the temperature contrast between the East Asian mainland and adjacent oceans, had a significant decadal perturbation and have been weaker during the period of rapid global warming over the past 50 years. On the centennial time scale, the EASM in the MWP was strongest over the past 1000 years. Over the past 1000 years, the EASM was weakest in 1450?C1570. When the EASM circulation was weaker, the monsoon rain belt over eastern China was generally located more southward, with there being less precipitation in North China and more precipitation in the Yangtze River valley; therefore, there was an anomalous pattern of southern flood/northern drought. From the 1900s to 1920s, precipitation had a pattern opposite to that of the southern flood/northern drought, with there being less precipitation in the Yangtze River valley and more precipitation in North China. Compared with the case for the MWP, there was a longer-time-scale southern flood/northern drought phenomenon in 1400?C1600. Moreover, the EASM circulation and precipitation did not synchronously vary with the trend of global temperature. During the last 150 years, although the annual mean surface temperature around the world and in China has increased, the EASM circulation and precipitation did not have strengthening or weakening trends. Over the past 1000 years, the weakest EASM occurred ahead of the lowest Northern Hemispheric temperature and corresponded to the weakest solar irradiance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号