首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 234 毫秒
1.
基于最佳一致逼近的高阶矩量法及其应用   总被引:1,自引:1,他引:0  
文章应用最佳一致逼近理论构建了一种高阶基函数方法,并将其应用于二维电磁散射问题的求解。将计算结果与传统矩量法及解析解比较可知,该高阶矩量法在较低的剖分情况下,具有很高的计算精度。将此新型的高阶基函数方法用于电大导体和其它形状散射问题中,计算结果依然有较高的计算精度,从而有效降低了计算复杂度。  相似文献   

2.
为提高矩量法求解积分方程的精度,基于Laguerre多项式提出一种新型的高阶基函数法,将其应用于2维导体的电磁散射问题的求解.将计算结果与低阶矩量法和解析解进行比较可知:此高阶矩量法在较低的剖分情况下,具有较高的计算精度,表明该方法具有有效性和精确性.将此新型的高阶基函数法应用于电大导体散射目标时,其计算结果仍具有较高的精度.  相似文献   

3.
基于高阶叠层矩量法理论,以三阶修正勒让德多项式为高阶叠层基函数,推导出表面电流公式,并将其应用到导体方柱和导体圆柱的二维导体电磁散射计算.数值计算结果表明:与传统的低阶基函数和三角基函数的方法比较,高阶叠层矩量法有更快的收敛速度,所需计算时间远远少于低阶矩量法;通过对高阶叠层矩量法计算TE波及TM波入射导体圆柱的电磁散射结果的比较,可知用于TE波时的计算收敛速度和效率都不及TM波;文中定义计算时间减少率,用于量化两者收敛速度的差异.数值计算结果同时也验证了高阶叠层矩量法有利于解决电大目标的电磁散射计算.  相似文献   

4.
以2阶、3阶基函数为例,应用高阶有限元-边界积分法分析了二维介质体电磁散射特性。计算了2种介质材料不同,电尺寸不同的二维介质方柱的雷达散射截面,结果与矩量法一致。对3种数值结果进行了误差分析,结果表明,高阶有限元-边界积分法比1阶有更高的计算精度、收敛速度和计算效率。  相似文献   

5.
为进一步提高电大尺寸目标散射求解能力,该文将一种新的基于曲边三角形的高阶叠层矢量基函数运用到矩量法中,并与多层快速多极子方法结合,分析了电大尺寸目标的电磁散射特性。与低阶基函数相比,在计算精度相同的情况下,高阶叠层基函数所需的未知量数目约为零阶其函数的40%。计算实例表明,该方法具有较高的精确性和有效性。  相似文献   

6.
利用基于Rao-Wihon-Glisson(RWG)基函数和双线性(LL)基函数的矩量法求解了任意形状理想导体目标的电磁场积分方程.通过几个计算实例的比较表明,在相同或类似的计算量的情况下,LL基函数比RWG基函数更为完备地描述实际的电流分布,并具有更高的求解精度和更快的收敛特性;同时,仅需作很小的改动,就可以将基于RWG基函数的矩量法程序改写成基于LL基函数的矩量法程序.  相似文献   

7.
特征基函数法是近几年提出的一种求解电磁散射问题的有效方法,该方法基于分块和高层基函数的概念,通过对子域大小的选择来控制生成矩阵的维数,是一种新颖的矩阵降阶方法.应用特征基函数并结合区域分解法对二维电大尺寸导体柱和介质柱的雷达散射截面进行了计算,且通过扩展子域边界的办法来消除直接划分子域所带来的电流不连续性问题.结果与传统矩量法的计算结果吻合良好,而计算效率得到较大的提高.  相似文献   

8.
本文应用矩量法研究了导体细线在瞬态电磁脉冲响应中的自然谐振频率的求取问题。对矩量法计算中基函数的选择,以及解的稳定性进行了较为深入的研究,获得了精度很高的计算结果。将其结果与解析法和其它数值方法进行比较,具有精度高,计算时间短以及解的稳定性高等特点。  相似文献   

9.
小波-矩量法以小波基作为矩量法中的基函数,通过Galerkin法可以获得很稀疏的阻抗矩阵,用迭代法求解时可减少计算机内存和计算时间。该文以有限尺寸的频率选择反射面为例,用小波-矩量法分析散射特性和电流分布,着重讨论了阻抗矩阵的稀疏化程度对计算精度的影响。结果表明,当非零元素仅为10%时,仍能达到满意的精度,因此小波-矩量法不失为分析电大尺寸问题的一种有效方法  相似文献   

10.
基于积分方程的矩量法求解电磁散射问题需要奇异积分计算,而且奇异阻抗矩阵的计算是影响矩量法计算精度的重要因素之一.论文将基于二维磁场积分方程的脉冲函数作为基函数、δ函数作为检验函数,对奇异矩阵元素的计算进行特别处理,将对角元素的计算分为两个子部分,每个子部分的贡献采用非奇异传统方法计算,于是对角元素的值为奇异值与两个子部分的贡献之和.数值结果表明:该方法用于曲线散射体求解具有有效性和正确性.  相似文献   

11.
在常规目标的各种电磁散射源中,缝隙属于弱散射源.但对于隐身目标,缝隙的影响就不可忽略.为分析缝隙对目标电磁散射特性的影响,在三维理想导体表面上排布不同形状及数量的缝隙,采用矩量法结合RWG基函数,分析导体表面的电流分布,并计算其宽带雷达散射截面(RCS).对一系列雷达散射截面的分析,得到缝隙电磁散射特性随缝隙数量、形状、间距变化的规律.  相似文献   

12.
微波暗室低散射目标RCS测量方法   总被引:2,自引:0,他引:2       下载免费PDF全文
为提高微波暗室低散射目标雷达散射截面(RCS)的测试精度,采用设置吸波墙、扫频RCS时域测量、匹配滤波和合理选用窗函数的方法测量了低散射目标的RCS,得到了目标宽带RCS数据和精细的频率特性。设置吸波墙的方法使小金属球的回波信杂比提高了20 dB,扫频宽带RCS时域测量值与理论值吻合良好。实测数据分析表明,扫频时域测量目标宽带RCS能减弱杂波叠加导致的不利波动,设置吸波墙和匹配滤波能显著抑制目标近距离处的转台和支架杂波,窗函数的平坦通带特性能减小数据截短影响,从而有效提高低散射目标RCS测试精度。  相似文献   

13.
基于高阶叠层矩量法分析理想导体缝隙的散射特性   总被引:2,自引:2,他引:0  
利用等效原理和Bab inet原理得到无限大理想导体缝隙的磁场积分方程.根据高阶矩量法的基本原理,对缝隙表面进行离散,利用高斯积分求得缝隙的等效磁流和散射特性.文中定义了相对尺寸s(s=h/λ),通过分析,当s不变时,缝隙的等效磁流不变,其RCS(雷达散射截面)也只是改变了振幅,变化的趋势都相同.且当s变大时,缝隙的等效磁流幅值变小,RCS的变化更频繁.  相似文献   

14.
根据平面阵列散射理论和天线共享孔径思想,提出了一种由完美吸波体(PMA)和人工磁导体(AMC)交错构成的共享孔径超表面(SA-MS),可在同一孔径面上同时实现对电磁波的吸收和相位对消。仿真结果表明由于吸波频段与相位对消频段的级联,该SA-MS相比理想导电体(PEC)、PMA、AMC-PEC具有宽带雷达散射截面(RCS)减缩效果。而后将该SA-MS与波导缝隙天线一体化设计并加工,仿真与实测结果表明:与金属面天线相比,SA-MS天线增益提升了3.3dB,同时RCS在5.52~7.51GHz范围内的减缩在6dB以上,减缩带宽达到30.5%,x、y极化条件下最大减缩量分别达到20.5dB和20.2dB,验证了设计的SA-MS对天线的辐射和散射性能均有提升。  相似文献   

15.
讨论了应用时域积分方程方法分析宽带电磁散射问题的精度问题,研究了选择不同的时域基函数对表面感应电流、散射远场和雷达截面的精度的影响。数值结果表明:对于封闭的散射体,必须使用组合场积分方程来消除内部共振;虽然时域感应电流和散射远场看起来很精确,但雷达截面有明显误差,这意味着雷达截面是检验精度的最好物理量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号