首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 104 毫秒
1.
聚类分析在入侵检测中的应用   总被引:1,自引:0,他引:1  
在对现有的入侵检测技术研究的基础上,着重对数据挖掘技术中的聚类分析方法在入侵检测领域中的应用进行了研究。通过分析网络中数据的特点,提出了一种基于改进的k-means算法的无监督二次聚类算法,并用入侵检测权威数据集KDD Cup1999作为实验数据将其实现,实验表明,该算法具有较高的检测率和较低的误检率。  相似文献   

2.
入侵检测方法   总被引:1,自引:0,他引:1  
对检测入侵方法中的两种方法——异常入侵检测和误用入侵检测进行了描述,介绍了这两种方法中采用的各种不同的检测技术。  相似文献   

3.
生物免疫系统的保护机制为我们设计计算机入侵检测系统带来了巨大的灵感,使得计算机免疫成为能解决复杂入侵问题的一种信息安全技术而备受关注.在本文中,我们提出一个新的异常入侵检测算法,该算法能够快速生成有效的检测器,并能实时检测入侵.  相似文献   

4.
异常的入侵检测技术是非常重要的动态安全技术的核心技术之一.通过对异常的入侵检测技术较全面的分析,阐述了入侵检测技术的定义,给出了异常检测的基本原理和异常检测的三种主要方法及其实现.  相似文献   

5.
基于粒子群优化的异常入侵检测算法的研究   总被引:1,自引:0,他引:1  
提出了一种基于粒子群优化的异常入侵检测算法.首先,对基于动态聚类分析的异常入侵检测系统进行了建模和关键模块分析,对聚类算法区别正常和异常数据记录的过程,进行了详细的介绍,然后针对基本PSO算法存在的局部早熟收敛问题,利用改进的粒子属性进行了算法改进,增加了粒子多样性.通过初始化种群、更新速度、更新位置、计算每个粒子的适应度值、更新pgd、循环迭代,得到最优解.最后,利用该算法对基于聚类的入侵检测系统进行实验,结果显示该算法明显提升了入侵检测系统的正确率.  相似文献   

6.
基于密度的异常检测算法在入侵检测系统中的应用   总被引:2,自引:0,他引:2  
给出了异常的定义,介绍了几种典型的异常检测算法并比较它们的优缺点,发现基于密度的异常检测算法的局部异常观点较符合现实生活中的应用.阐述了基于密度的异常检测算法的定义及其在入侵检测系统中的具体应用.  相似文献   

7.
入侵检测技术研究   总被引:4,自引:0,他引:4  
入侵检测是一种重要的主动安全防御技术,近年来成为安全领域的研究热点.该介绍了入侵检测系统的发展历史及现状,阐述了入侵检测系统的分类和通用入侵检测框架,并详细讨论了各种入侵检测技术.最后讨论了入侵检测技术的发展方向.  相似文献   

8.
为保证网络安全,传统的依靠防火墙的手段已显得不足,入侵检测技术作为一个新的网络安全技术已经登上的网络安全的舞台。本文简单介绍了入侵检测的概念,叙述了入侵检测技术的分类和入侵检测系统的体系结构,并指出了当今的入侵检测的漏洞和缺陷。  相似文献   

9.
局立阴  张娅  刘海梅 《科技信息》2011,(1):I0092-I0092
本文对入侵检测的功能和现有的入侵检测系统进行分析,在分析其优点和不足的基础上研究和总结了在网络安全方面入侵检测系统的发展方向。  相似文献   

10.
通过对入侵检测和数据流异常挖掘技术的研究,把数据流异常挖掘应用到入侵检测,成为目前入侵检测新的有效方法和研究热点.对基于数据流异常挖掘的入侵检测系统模型进行了设计,并对数据流异常挖掘算法进行了设计和实现,通过实验分析,取得了较好的效果.  相似文献   

11.
作为一种主动的信息安全保障措施,入侵检测技术有效地弥补了传统安全保护机制所不能解决的问题.先进的检测算法是入侵检测研究的关键技术.首先提出新的相似度函数Dsim(),有效地解决了高维空间聚类选维和降维问题,实现了高效的聚类;接着将Dsim()与近似K-medians算法相结合,提出了新的模糊聚类算法----DCFCM,并将其用于入侵检测.解决了由尖锐边界、孤立点所带来的误报警和漏报警问题,实现了对异常行为的检测.仿真实验结果表明,该系统对网络正常数据和异常数据聚类,进行动态数据分析,实现异常检测的思想是有效的.在网络入侵数据检测中,DCFCM算法相对于传统的FCM算法有较高的检测率和较低的误警率.  相似文献   

12.
针对目前基于K-Means算法的入侵检测技术所存在的符号类型数据处理能力欠缺、误报率较高的问题,提出了一种基于聚类和关联规则修正的入侵检测技术。将关联规则挖掘技术引入到聚类分析机制中,利用针对符号型属性的关联规则挖掘结果对聚类结果进行修正,从而有效降低由于在入侵检测单纯使用聚类分析所导致的误报。详细阐述了改进的具体实现方案,并通过实验验证了该技术的可行性。  相似文献   

13.
针对聚类算法在入侵检测应用中存在的参数预设、聚类有效性评价、未知攻击类型检测等问题,提出了一种基于密度和最优聚类数的改进算法,根据样本的分布情况启发式地确定初始聚类中心,从样本的几何结构角度提出一种新的内部评价指标,给出了最优聚类数确定方法,在此基础上,设计了一个增量式的入侵检测模型,实现了聚类中心和聚类数目的动态调整.实验结果表明,与K-means及其他两种改进聚类算法相比,新算法收敛速度更快、聚类准确率更高,能够对未知网络行为进行有效聚类,具有较好的入侵检测效果.  相似文献   

14.
一种改进的k-means聚类算法在入侵检测中的应用   总被引:4,自引:0,他引:4  
讨论了经典的k-平均聚类算法,说明了它存在不能很好地处理符号数据和对噪声与孤立点数据敏感等不足,提出了一种改进的k-平均聚类算法,克服了k-平均聚类算法的缺点,并从理论上分析了该算法的复杂度。实验证明,用该方法实现的数据聚类与传统的基于平均值的方法相比较,能有效提高数据聚类效果以及入侵检测的准确度。  相似文献   

15.
在模糊c均值算法基础上,提出一种将粒子群算法与c均值算法相结合产生基于自适应粒子群优化的模糊聚类算法(APFC).用KDD cup99数据集进行评估模糊c均值算法和APFC算法检测性能.试验结果表明, APFC均值算法能够避免模糊c均值算法固有的缺点,检测率提高和误报率下降,并且有较高的检测性能.  相似文献   

16.
针对现有入侵检测技术的不足,对基于机器学习的异常入侵检测系统进行了研究,提出了一种基于半监督聚类的异常入侵检测算法。此算法通过利用少量的标记样本,生成用于初始化算法的种子聚类,然后辅助聚类过程,对数据进行检测。实验表明,与以往入侵检测算法相比,此算法可以明显地改善入侵检测系统的性能。  相似文献   

17.
林辉 《河南科学》2012,30(7):910-912
详细地分析了WinPcap的结构,WinPcap提供给用户的函数,根据网络协议和端口对数据包进行过滤,将模糊聚类引入到入侵检测系统中来,用KDD99测试数据进行实验,能有效检测出入侵数据.  相似文献   

18.
改进k均值聚类算法在网络入侵检测中的应用研究   总被引:2,自引:0,他引:2  
针对k-means算法事先必须获知聚类数目以及难以确定初始中心的缺点, 提出了一种改进的k-means聚类算法.改进后的算法首先使用了复合形和粒子群算法来选取聚类的初始中心点,然后使用k-means算法快速收敛获取聚类结果.实验表明:把改进后的算法用于网络入侵检测系统中,可以提高不需指导的异常检测的检测率,降低误检率.  相似文献   

19.
针对网络入侵检测与聚类等问题,提出了一种综合模糊聚类与改进的SOM神经网络方法.通过对网络入侵数据提取、分析和处理,建立了网络入侵检测聚类模型,并对传统SOM网络层次进行改进,结合易发的网络入侵类型有针对性地对网络入侵数据进行聚类.网络入侵检测聚类与其他方法比较的结果表明,该模型在网络入侵检测聚类中具有更高的准确性和均衡性,该方法能有效提高网络入侵分类精度,减少聚类误差.  相似文献   

20.
针对应用聚类方法检测入侵中参数人为指定的问题,提出了一种新的基于无监督的聚类算法.该方法不需要人为设置参数并且不受数据输入顺序的影响,聚类的形状是任意的,能够较真实地反映数据分布的具体性状.算法通过比较无类标训练集样本间的距离,根据距离最近的样本首先聚合成类的特性,在每一步聚类结束时,再次比较类间距离以及计算类内数据占总数据的比率来确定异常数据类.实验证明该算法处理未知入侵检测问题的检测率为89.5%,误报率为0.4%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号