首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
原位合成TiC颗粒增强铝基复合材料及其磨损性能   总被引:2,自引:0,他引:2  
利用原位合成的方法在几种锻铝基体中合成了TiC颗粒.X射线衍射谱表明,在复合材料的显微组织中TiC是惟一反应生成物.与基体材料相比,引入TiC后材料的耐磨性能有很大幅度的提高,且磨损性能与基体材料的强度之间没有必然的联系.对磨损试样表面的sEM观察显示,在磨损过程中TiC颗粒凸起于基体,在表面起支撑载荷的作用,同时使摩擦副(滚轮)与基体表面之间形成一个储存润滑油的间隙,从而改善了磨损过程中的润滑条件,减小了试样的磨损量.  相似文献   

2.
SiC颗粒增强镁基复合材料的研究   总被引:5,自引:0,他引:5  
SiC颗粒增强镁基复合材料的研究权高峰(西安交通大学,710049,西安)1实验方法及材料本研究采用常规粉末冶金方法,将基体表观成分为MB15镁合金(Mg-5Zn-0.6Zr,镁粉粒度约250目,Zn、Zr粉均细于300目)的混合金属粉与SiC颗粒(...  相似文献   

3.
综述了原位内生颗粒增强铝基复合材料的研究现状,从增强相选择材料制备技术、界面表征、机械性能、反应机理等各个领域,详尽阐述了原位内生颗粒增强铝基复合材料的特点,并指出今后研究方向.  相似文献   

4.
制备了Al2O3/Al-Cu和Al2O3/Al-Cu-Si原位复合材料,采用SEM观察显微组织,XRD分 析物相,EDS分析相所含元素.初步结果表明,原位合金化和原位颗粒共同强化金属基体是可 行的,合金元素Cu和Si出现在基体中,细小增强颗粒Al2O3呈弥散分布.  相似文献   

5.
用原位反应合成法(即XD法)制备了TiC颗粒增强2618复合材料,并用X-ray衍射分析技术、透射电镜及拉伸实验对其结构和性能进行了研究.结果表明利用原位反应合成法可以制备TiC增强多元素合金2618为基体的复合材料;与普通熔铸法相比,逆向熔铸法可以缩短熔铸时间,减少TiC粒子损失,从而制得较为理想的复合材料;TiC粒子的加入可以提高2618合金的力学性能.图6,表1,参8.  相似文献   

6.
本文简单介绍了碳纳米管的性质和优点,概述了目前国内外对原位合成碳纳米管增强金属基复合材料的研究现状并阐述了原位合成碳纳米管增强金属基复合材料目前仍待解决的问题。  相似文献   

7.
介绍了SiC颗粒增强铝基复合材料断裂韧性的研究现状,着重分析了基体合金成分、SiC颗粒体积分数、颗粒粒度形貌、界面性质以及热处理工艺对复合材料断裂韧性的影响,并对SiC复合材料的研究进行了探讨和展望。  相似文献   

8.
本文综述了碳纳米管增强镁基复合材料的制备方法和研究现状,介绍了目前常用的熔体搅拌法、消失模铸造法、粉末冶金法、熔体浸渗法和预制块铸造法等制备方法的原理和制备技术。  相似文献   

9.
原位合成铝基复合材料的研究现状   总被引:17,自引:0,他引:17  
简介了目前反应合成铝基原位复合材料的常见复合工艺:固-液、气-液和固-固反应等。指出它们的优点是反应合成的强化相尺寸细小,与基体结合强度高,缺点是强化相种类较少,反应过程难以精确控制。其次,概述了原位铝基复合材料的常见陶瓷强化相和金属问化合物强化相良好的力学性能、耐磨性和高温性能,以及反应合成时与基体亲和力大的特点。指出反应合成的铝基复合材料的有常温力学性能高、高温性能好和耐磨性突出的优点,而存在的主要研究难题则是整个材料均质化方法不理想、生长机制等基础理论研究缺乏、反应伴生的化合物难以控制等。作者还讨论了铝基原位复合材料在民用领域的潜在应用前景。  相似文献   

10.
金属基复合材料原位反应合成技术现状与展望   总被引:23,自引:0,他引:23  
在现有的金属基复合材料制备技术中,原位反应合成技术具有显著的技术优势和经济优势,它已成为当今复合材料领域中最活跃的研究方向。原位反应合成技术主要有:放热弥散法、气液反应合成法、自蔓延燃烧反应法、直接氧化法、无压力浸润法、反应喷射沉积法、接触反应法、机械合金化法等。文中综合评述了各种原位反应合成工艺方法的原理、特点和应用前景。利用原位反应合成法制备金属基寿星 合材料,在同等条件下,其力学性能一般都高于强制法制备的复合材料。并且原位反应合成技术的原料来源广泛、价格较低,工艺又相对简单、制作成本低,适合并能够大规模工业化生产,是一种很有前途的合成技术。  相似文献   

11.
研究了原位合成 1 0 % (体积分数 )TiC Fe和 (TiW )C Fe复合材料 ,采用扫描电镜分析了复合材料的微观结构 ,利用X射线分析了相组成·结果表明 ,在TiC Fe复合材料中 ,TiC作为惟一的第二相有粒状和条状两种形态·分析认为 ,粒状为先共晶相 ,而条状为共晶·通过用W替代部分Ti,成功地制备了 1 0 % (体积分数 ) (TiW)C Fe复合材料 ,其中 ,(TiW)C作为惟一的第二相比较均匀地分布在Fe基体中 ,其形态大部分呈粒状·在粒状 (TiW)C相中 ,W和Ti呈不均匀分布 ,这种特征与凝固过程中 (TiW)C的形成过程有关·与TiC相比 ,(TiW)C的密度与...  相似文献   

12.
采用反复塑性变形(RPW)技术,再结合挤压工艺可制备出SiC颗粒增强AZ31镁基复合材料,RPW次数和SiC颗粒的加入量对SiCP/AZ31镁基复合材料显微组织和性能的影响也得到了研究。研究结果表明,随着RPW次数的增加,SiC颗粒逐渐被细化并最终在基体中弥散分布,在RPW为300次时的力学性能最佳;随着SiC颗粒加入量的增加,其室温抗拉强度和硬度都逐渐增大,在SiC颗粒体积分数为6%时达到最大值,分别为371MPa和112。  相似文献   

13.
团球γ+(Fe,Mn)3C/γ体钢基自生复合材料的组织与性能   总被引:5,自引:3,他引:2  
采用 Ca- Si合金变质处理钢液 ,通过影响钢液中 C、Mn等合金元素的偏析和相的生成 ,控制钢液凝固组织 ,在铸态下获得团球状共晶体增强奥氏体钢基自生复合材料 (EAMC) .该材料利用硬质相团球状 γ (Fe,Mn) 3 C共晶体强化高韧性奥氏体基体 ,充分发挥基体、增强相的特性和两者的强韧性耦合 ,获得了优异的力学性能和耐磨性 .试验表明 ,在中、低载干磨损条件下 ,EAMC具有比奥氏体中锰钢优异的耐磨性能 .  相似文献   

14.
在不使用任何黏合剂的情况下,将镍钴双金属有机框架材料(NiCo-metal organic framework,NiCo-MOF)和MXene材料附着在泡沫镍(nickel foam,NF)表面,合成了高性能电极材料,这两种材料结合生长出的层状结构有利于离子的快速传导,减少了活性材料的无效堆砌,同时表现出理想的电化学性能。当投入原料的镍钴物质的量之比为1∶2时,制得的电极材料在5 mA/cm2的电流密度下表现出4.96 C/cm2的优良比电容。得到的电极与活性炭(activated carbon,AC)负极组装成不对称超级电容器后,在10.09 W/cm2的功率密度下,得到的超级电容器的能量密度可达到1 530 mWh/cm2,并且当功率密度升高到102.29 W/cm2时,能量密度仍可以保持在770 mWh/cm2。在15 mA/cm2的电流密度下,经过5 000次充放电循环后,不对称超级电容器的电容保持率为98.52%。  相似文献   

15.
铝基复合材料作为金属基复合材料中最重要的材料之一,在工业生产以及日常生活中有着非常广泛的应用。石墨烯由于其高导热性、高阻尼性、高弹性模量、高强度以及良好的自润滑性成为复合材料中重要的增强体。将石墨烯用作增强体增强铝基复合材料有着非常大的应用潜力。归纳了石墨烯增强铝基复合材料的研究进展;总结了影响其性能的主要因素即增强体材料种类,石墨烯在铝基体中的均匀分散性以及铝基体与石墨烯之间的界面情况;介绍了石墨烯增强铝基复合材料的两种制备方法;分析了石墨烯增强铝基复合材料的增强机制;并展望了其发展前景,以期为制备高性能石墨烯增强铝基复合材料提供参考。  相似文献   

16.
以硬质颗粒作为增强体的铝基复合材料,避免了纤维增强金属基复合材料制备过程中造成的纤维受损,制备工艺复杂及纤维昂贵等缺点,并可克服自生复合材料增强相的成分、形态、尺寸及相对量受到平衡相图、亚稳相图及生长动力学的严格限制,使复合材料的取材具有广泛性和灵活性,是近年来金属基复合材料的重点研究方向之一.  相似文献   

17.
利用高能球磨得到的Fe(Si)固溶体粉末与SiC粉末在1100℃、20 MPa下热压烧结1 h原位合成Fe3Si-CGr(石墨)复合材料,考查Fe3Si-CGr/Si3N4摩擦副在干摩擦条件下的摩擦性能,并与Fe3Si/Si3N4摩擦副在相同条件下的摩擦性能作对比.结果表明,Fe3Si-CGr/Si3N4与Fe3Si/Si3N4摩擦副均具有比较稳定的摩擦系数-时间特性,Fe3Si中引入石墨相降低了Fe3Si与Si3N4在干摩擦条件下的摩擦系数,在一定程度上改善Fe3Si摩擦性能.  相似文献   

18.
利用MPX-2000型主轴盘销式磨损试验机和扫描电子显微镜(SEM)研究了团球γ (Fe,Mn)3C共晶体增强奥氏体钢基自生复合材料(EAMC)在干摩擦磨损工况下的滑动磨损特征.试验表明,EAMC的磨损过程存在跑合与稳态磨损2个阶段,跑合阶段中主要发生奥氏体基体的强烈塑性变形与流动,稳态磨损阶段中的磨损机制主要为剥层磨损.团球共晶体作为主要的承载物体承受摩擦磨损作用,推迟位错集中区的形成和磨粒在对偶件上的积聚,能有效地减小EAMC磨屑的形成和脱落,降低EAMC的磨损量,提高EAMC向严重磨损转变的,临界载荷.修正了颗粒增强复合材料向严重磨损转变的临界载荷判据,采用该判据所确定的EAMC临界载荷与实验结果吻合.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号