首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 555 毫秒
1.
纳米硼酸锌的制备及对木材阻燃性能影响研究   总被引:1,自引:0,他引:1  
以Zn(NO3)2·6H2O和Na4B4O7·10H2O为主要原料,通过共沉淀法制备纳米硼酸锌,以X-射线粉末衍射和扫描电子显微镜分析了纳米硼酸锌的物相组成及形貌,并研究其对木材阻燃性能的影响.研究结果表明:所制备的硼酸锌平均粒径为30-60 nm,分散均匀.结晶度好.该纳米硼酸锌具有良好的阻燃性能.添加10%的纳米硼酸锌可使桦木粉的300℃残炭量比未添加硼酸锌的提高了19.95%,比微米硼酸锌提高了14.18%;其极限氧指数为38.7.  相似文献   

2.
为了进一步提高酚醛树脂的阻燃性能,在酚醛树脂中填充纳米硼酸锌4ZnO·B2O3·H2O粒子对其进行改性.实验中采用苯酚、甲醛和自制改性纳米硼酸锌为原料通过原位合成法制备了纳米硼酸锌4ZnO·B2O3·H2O/酚醛树脂复合材料,通过红外光谱(FT-IR)、扫描电子显微镜(FESEM)、热重-差热分析(TG-DTA)和氧指数测定仪(LOI)对复合材料进行表征和测试.结果表明,添加纳米硼酸锌4ZnO·B2O3·H2O后,酚醛树脂的热稳定性有了明显提高,特别是当添加量为7%时,复合材料氧指数达到最大值46.3,酚醛树脂的阻燃性能显著提高.  相似文献   

3.
制备了水合物氯化镧,用化学分析和在氩气气氛下TG-DSC(热重-差式扫描量热法)联用的热分析研究,以及X射线粉末衍射表征,确定水合氯化镧的组成为LaCl3.7H2O.其在氩气气氛下的热分解脱水反应可以分解成四个,分别在50.0~119.3℃,119.3~165.3℃,165.3~197.4℃,197.4~237.8℃的四个温度段内,每一步的失水数分别为1H2O,3H2O,2H2O及1H2O.  相似文献   

4.
以2,5-双(四唑)对苯二甲酸(H4dtztp)和La(NO3)3·6H2O为原料,采用溶剂热法制备得到三维结构的新型配合物{[La2(dtztp)1.5(H2O)5]·DMA·2H2O}n.通过元素分析、红外分析、粉末X射线衍射(PXRD)、X射线单晶衍射对其结构进行表征,采用差式扫描量热法(DSC)和热重分析(TG...  相似文献   

5.
文章以微米球和纳米棒两种形貌的Mn2O3分别作催化剂,用XRD和TEM对其结构与形态进行了表征,研究了它们对H2O2分解亚甲基蓝的催化性能.结果表明,分别以微米球和纳米棒两种形貌的Mn2O3作催化剂,H2O2分解亚甲基蓝的脱色反应均符合一级反应动力学,反应速率常数分别为0.002 24 min1和0.007 24 min-1,Mn2O3纳米棒的催化性能优于Mn2O3微米球.在以Mn2O3纳米棒为催化剂的条件下,研究了亚甲基蓝的初始质量浓度、H2O2的质量分数以及催化剂的用量对亚甲基蓝脱色率的影响.  相似文献   

6.
报道了草酸作为沉淀剂并添加表面活性剂合成了不球磨Y2O3:Eu^3 的方法,其D50=0.53μm。粉体细且分布均匀。与微米晶比较该纳米晶的发射光谱光谱发生明显蓝移,色座标符合荧光粉要求。  相似文献   

7.
以普通无机盐为原料采用沉淀法制备了Cu3V2O7(OH)2·2H2O纳米片.采用X射线衍射(XRD)和场发射扫描电子显微镜(FE-SEM)对样品的组成和表面形貌进行了表征.紫外-可见光吸收测试显示Cu3V2O7(OH)2·2H2O纳米片具有较宽的紫外-可见光吸收范围,带隙宽度为2.22 eV.  相似文献   

8.
用步冷曲线法研究室温冷却环境下成核剂-Na2HPO4·12H2O复合体系的过冷性能,分析成核剂的添加量和晶体结构对过冷度的影响.结果表明:Na2SiO3·9H2O、NaF、CH3COONa·3H2O和Na2B4O7·10H2O这4种成核剂对Na2HPO4·12H2O的过冷现象有不同程度的改善.为有效改善过冷,成核剂的添加量有一个合适的范围.在10g的Na2HPO4·12H2O中,分别添加0.30g的Na2SiO3·9H2O、0.15g的CH3COONa·3H2O、0.05g的NaF和0.05g的Na2B4O7·10H2O时,抑制过冷的效果最好.同时发现,与Na2HPO4·12H2O晶体结构不同的成核剂Na2SiO3·9H2O改善过冷的效果最显著;与Na2HPO4·12H2O晶体结构相同的成核剂中,Na2B4O7·10H2O改善过冷的效果优于CH3COONa·3H2O.  相似文献   

9.
采用10 mol/L NaOH溶液对商品化TiO2进行碱处理制备TiO2纳米管,通过X射线粉末衍射、N2吸脱附、扫描电镜等手段表征了碱处理温度和时间对TiO2纳米管结构和形貌的影响.研究发现:120~150 ℃碱处理生成TiO2纳米管,180 ℃则为纳米棒;400 ℃焙烧后纳米管的BET比表面积大于100 m2/g,而纳米棒的比表面积小于50 m2/g.以TiO2纳米管为载体,采用浸渍法制备V2O5负载的催化剂,拉曼(Raman)光谱、程序升温还原(H2-TPR)分析等表明钒氧物种在TiO2纳米管表面呈高度分散状态.3-甲基吡啶氨氧化反应结果表明,以120 ℃制备的TiO2纳米管为载体负载V2O5催化剂的催化选择性最高.  相似文献   

10.
高导电H3PMo12O40掺杂聚苯胺微米棒的合成与表征   总被引:7,自引:7,他引:0  
分别以静电纺丝法制备的H3PMo12O40/ PVA和纯H3PMo12O40微米管为模板,制备了H3PMo12O40掺杂的聚苯胺微米棒材料,并运用红外光谱、X射线粉末衍射和扫描电镜进行了表征.四探针法测定了产品的电导率.结果表明:聚苯胺微米棒的直径在400 nm左右;最高电导率为3.3 S/ cm.  相似文献   

11.
通过合理的设计与调控,利用聚乙二醇-2000(PEG-2000)作为结构导向剂,成功制备了微米结构的氧化亚铜(Cu_2O).通过调节PEG-2000的量,产物形貌可分别展现为由不规则纳米棒组成的鸟巢状Cu_2O和Cu_2O微米球.产物相组成、形貌及光学吸收性能由X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和紫外-可见漫反射光谱(UV-Vis)表征.XRD谱表明,所有制备的微米结构均为纯净立方相Cu_2O.SEM和TEM结果证明,PEG-2000的加入可以有效调控Cu_2O材料的微观结构.基于Cu_2O的物理、化学性质及产物形貌等,提出不同形貌Cu_2O微米结构的形成机理.UV-Vis谱表明不同形貌产物均具有可见光吸收.利用可见光照射下罗丹明B的降解实验考察了不同形貌Cu_2O微米结构的光催化性能.结果证明,与未加PEG-2000制备的Cu_2O材料相对比,鸟巢状Cu_2O和Cu_2O微米球显示出更高的光催化降解有机染料活性.  相似文献   

12.
在氩气气氛下,以粉煤灰为原料,石墨为还原剂,研究碳还原粉煤灰制备SiC/Al2 O3系复合材料的反应过程,并探索其制备的工艺条件.利用X射线衍射分析还原产物的物相变化规律,使用扫描电镜和能谱仪观察复合材料的微观结构.结果表明:在1673 K粉煤灰中石英相与碳反应生碳化硅,1773 K莫来石相基本分解完全.随着反应温度的升高,生成碳化硅和氧化铝含量增加,较合适的温度条件为1773~1873 K;保温时间的延长,有利于碳化硅和氧化铝的生成,较好的保温时间为3~4 h;增加配碳量对碳化硅和氧化铝的生成有促进作用,较合适的C/Si摩尔比为4~5.在制备出的SiC/Al2 O3复合材料中碳化硅在产物中分散较为均匀,并且粒度小于20μm.  相似文献   

13.
以Al2(SO4)3为铝源,(NH4)2CO3为沉淀剂,利用沉淀-共沸蒸馏法制备出前驱物碳酸铝铵(AACH),并煅烧得到超细α-Al2O3粉末.研究了加料方式、表面活性剂、干燥方式等因素对产物分散性能的影响,分析了超细氧化铝粉末在热处理过程中的结构和性能变化.采用热重/差示扫描法(DTA/TGA)、扫描电镜(SEM)、X射线衍射(XRD)以及ICP等现代分析检测技术对样品性能进行了表征.结果表明,只有将Al2(SO4)3溶液雾化加入到(NH4)2CO3溶液中,添加适量PEG1000做为分散剂,同时采用正丁醇共沸蒸馏才能制备出粒度分布均匀、分散性能优异的超细α-Al2O3粉末.煅烧过程中,氧化铝的相变过程为:Al2O3(无定型)→γ-Al2O3→θ-Al2O3→α-Al2O3,且随着煅烧温度的提高,产物的晶粒尺寸不断增大,密度不断得到提高.在优化条件下合成的前驱物AACH于1 200 ℃煅烧2 h,能得到粒度分布均匀、分散性良好、形貌为类球形且纯度为99.97%以上的α-Al2O3粉体.图9,表1,参15.  相似文献   

14.
低温固相反应合成NiFe2O4尖晶石纳米粉   总被引:1,自引:1,他引:0  
以FeSO4.7H2O,NiSO4.6H2O和NaOH为原料,NaCl为分散剂,在室温下充分研磨反应制备前驱体,然后将前驱体进行煅烧得到NiFe2O4尖晶石纳米粉.重点研究了分散剂含量、煅烧温度和保温时间对粉体粒度和形貌的影响.利用X射线衍射仪(XRD)和扫描电子显微镜(SEM)对所得产物进行表征.结果表明:添加20%(质量分数)NaCl制得的前驱体在800℃下煅烧1.5h得到的纳米粉分布均匀,颗粒呈球形并且晶型完整单一,平均粒径约为75nm.  相似文献   

15.
针对传统的沉淀法制备氧化铈工艺,研究了以Ce Cl3溶液为原料的超声喷雾热解法制备超细Ce O2短流程工艺路线.通过TG-DTA实验研究Ce Cl3·7H2O的热分解过程,利用XRD,SEM和TEM表征了沉淀法和喷雾热解法制得的样品,最后从产品、流程及资源综合利用等方面对两种工艺进行对比分析.结果表明:Ce Cl3·7H2O在25~233℃为脱水反应,热分解温度为500℃,高于583℃热分解完全;在600℃时超声喷雾热解法制备的Ce O2分散性好、形貌规则,粒度主要分布在0.11~0.80μm,沉淀法制备的Ce O2有团聚现象且形貌不规则.超声喷雾热解法是一种流程短、资源综合利用高且产品形貌规则的清洁工艺技术.  相似文献   

16.
目的制备离子电池正极材料LiNi_(0.5-x)Mn_(0.5-x)Zr_(2x)O_2微米球,并研究其电化学性能与掺杂Zr4+量的关系。方法以NiSO4·6H2O,MnSO4·H2O和Na2CO3等为原材料通过共沉淀的方法制备前驱物(Ni0.5Mn0.5)CO3,然后前驱物与ZrO2,Li2CO3混合均匀,在500℃下煅烧3h,900℃下煅烧16h得到正极材料LiNi_(0.5-x)Mn_(0.5-x)Zr_(2x)O_2。结果 X射线衍射分析证明得到的产物为纯相,扫描电子显微镜图像显示得到的产物具有3~5μm左右的微米球形结构,并对锂离子电池的电化学性能进行了研究。结论 LiNi0.5Mn0.5O2掺杂了Zr4+后能有效降低锂/镍混排度,而且可提高具有微米球结构的LiNi_(0.5-x)Mn_(0.5-x)Zr_(2x)O_2系列锂离子电池正极材料的电化学性能。  相似文献   

17.
Cr2O3掺杂对ZnO陶瓷薄膜低压压敏性能的影响   总被引:1,自引:0,他引:1  
为了制备高性能ZnO陶瓷薄膜低压压敏电阻器,利用新型Sol-Gel方法研究了Cr2O3掺杂对ZnO陶瓷薄膜低压压敏性能的影响.复合先驱体溶液由Bi2O3,Sb2O3,MnO及Cr2O3掺杂的ZnO纳米粉体均匀分散于含有Zn(CH3COO)2,Bi2O3,Sb2C3,MnO及Cr2O3的溶胶中制成.研究结果表明:利用新型Sol-Gel方法制备的ZnO陶瓷薄膜中,ZnCr2O4相在较低的Cr2O3添加量时出现,当Cr2O3的摩尔分数为0.75%时,ZnO陶瓷薄膜的非线性系数α为7,压敏电压为6V,漏电流密度为0.7μA/mm^2。  相似文献   

18.
通过热重法(TG-DTG)、差示扫描量热法(DSC)、X射线衍射(XRD)技术研究了固态物质ZnC2O4·2H2O-NiC2O4·2H2O机械混合物(摩尔比3:2)在空气中热分解的过程.TG-DTG的曲线表明:其热分解过程TG曲线中4个明显的台阶与理论失重相吻合.XRD结果表明:样品在500℃煅烧生成为较好晶型的ZnO-NiO混合物.用Kissinger-Akahira-Sunose(KAS)法和Ozawa法求取Ea,用热分析动力学三因子求算的比较法判断出可能的机理函数.ZnC2O4和NiC2O4热分解的活化能分别为175.69~176.48 kJ/mol、220.28~200.93 kJ/mol,ZnC 2O4和NiC2O4分解反应过程可能遵循的机理函数微分形式分别为f(α)=3(1-α)[-ln(1-α)]2/3和f(α)=2(1-α)[-ln(1-α)]1/2;积分形式分别为g(α)=[-In(1-α)]1/3和g(α)=[-ln(1-α)]1/2,都属于随机成核和随后生长型机理函数(Avrami-Erofeer),Am,其调节因子m=3、2.  相似文献   

19.
分别以板钛矿和锐钛矿型的TiO2为先驱物水热合成钛酸铋亚微米棒.由X射线衍射、选区电子衍射以及Raman光谱的测量结果可知,合成的产品为Bi4Ti3O12. 源自板钛矿和锐钛矿的Bi4Ti3O12,其结构表现出明显的差异.在同样的条件下,Bi插入锐钛矿TiO2的量多于其插入板钛矿TiO2的量,从而导致部分X射线衍射峰向高角度方向稍微移动.保留下来的短Ti-O键限制了b-Bi4Ti3O12亚微米棒沿[010]方向生长,使得b-Bi4Ti3O12亚微米棒长度不均.  相似文献   

20.
用分步浸渍法制备CuO/CeO2/γ-Al2O3脱硫吸收催化剂.X射线衍射(X-ray diffraction,XRD)、H2程序升温还原(H2temperature programmed reduction,H2-TPR)和差热天平(thermogravimetric analysis,TGA)等技术分析表明,CuO在γ-Al2O3上的分散阈值为0.042 g/100 m2,CeO2以二维形态(2D-Ce)和团簇三维形态(3D-Ce)存在于γ-Al2O3表面.实验结果表明,CeO2有利于CuO分散,可明显提高CuO/γ-Al2O3吸收催化剂对SO2的吸收总量、吸收速率及其循环使用寿命.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号