首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
PM2.5 has become an increasing public concern recently because of its visibility reduction and severe health risks. For the whole year of 2013, hourly PM2.5 data of 496 monitoring sites scattered in 74 cities of China are collected to analyze temporal and spatial variability of PM2.5 concentration. Different temporal scales (seasonal variation, monthly variation and daily variation) and spatial scales (urban versus rural, typical areas and national scale) are discussed. Results show that PM2.5 concentration changes significantly in both long-term and short-term scales. An apparent bimodal pattern exists in daily variation of PM2.5 concentration and the daytime peak appears around 10:00 am while the lowest concentration appears around 16:00 pm. Spatial autocorrelation analysis and Ordinary Kriging are used to characterize spatial variability. Moran’s I of PM2.5 concentration in three typical regions, the Beijing-Tianjin-Hebei region, the Yangtze River Delta region and the Pearl River Delta region, is 0.906, 0.693, 0.746, respectively, which indicates that PM2.5 is strong spatial correlated. Spatial distribution of annual PM2.5 concentration simulated by Ordinary Kriging shows that 7.94 million km2 (83%) areas fail in meeting the requirement of China’s National Ambient Air Quality Standards Level-2 (35 µg/m3) and there are at least three concentrated highly polluted areas across the country.  相似文献   

2.
Aerosol samples for PM2.5 were collected in Beijing for 38 consecutive days from March to April 2001 using an IMPROVE Sampler. Concentrations of 20 elements in PM2.5 were determined using a PIXE method. Results show that the average mineral dust concentration of PM2.5 was 14.6 Ilg/m3 during the observation period. On the sand-dust event days of March 21 and April 10, dust PM2.5 mass concentrations were 62.4 and 54.1 μg/m^3, respectively.These demonstrate that fine particle pollution by dust event in Beijing was very severe. The enrichment factors of S and Cu reached minimums on the dusty days and were high on the non-dusty days. It is considered that enrichment factors of elements in PM2.5, which are associated with human activities, can probably provide an effective method to distinguish local sources from external sources of dust. Factor analysis on the chemical composition in PM2.5 shows that sources of crustal matters, anthropogenic emission, and oil combustion contributed to PM2.5 levels in air in the springtime of 2001 in Beijing.  相似文献   

3.
Coarse (PM2.5-10) and fine (PM2.5) atmospheric particulate samples were collected in summer and winter during 2005-2007 in the juncture belt between urban and rural areas of Beijing. Elements, ions, organic/elemental carbon (OC/EC) and polynuclear aromatic hydrocarbons (PAHs) were determined to obtain some latest information about the particulate pollution in the juncture belt of Beijing. Particulate matter levels at this site were high as compared with the levels at other sampling sites in Beijing. Pollution elements, secondary ions and PAHs were enriched in fine particles rather than in coarse particles. An obvious seasonal variation of the chemical composition of PM was observed. Source apportionment results showed that secondary components were the largest mass contributor of PM2.5, accounting for 28%; whereas soil-related sources were the largest contributor of PM2.5-10, explaining about 49% of the total mass. The abnormal levels of soil heavy metals at the electronic waste disassembly site in the upwind villages suggested the potential impact of such activities to the environment.  相似文献   

4.
Work hardening is a well-known phenomenon occurring in crystalline metals during deformation,which has been widely used to increase the strength of metals although their ductility is usually reduced simultaneously. Here we report that the plastic strain of Zr41Ti14Cu12.5Ni10Be22.5 (at.%) bulk metallic glasses has been increased from 0.3% for the as-cast sample to 2.5%-8.0% for samples that have experienced pre-deformation under constrained conditions. The pre-deformed glassy alloys possess more free volume and abundant introduced shear bands,which are believed to promote the activation of shear bands in post-deformation and result in an increase in plasticity. The orientation of the pre-introduced shear bands relative to the loading direction will affect the deformation behavior of pre-deformed samples. The present results show that pre-deformation of this glassy alloy will result in work toughening. This work toughening effect can be removed by isothermal annealing at a sub-Tg (glass transition) temperature,which causes annihilation of free volume and healing of shear bands.  相似文献   

5.
Organic aerosol (OA) is a crucial component of atmospheric fine particles. To achieve a better understanding of the chemical characteristics and sources of OA in Beijing, the size-resolved chemical composition of submicron aerosols were measured in-situ using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer in the winter of 2010, with a high time resolution of 5 min. During this study, the mean OA mass concentration was 20.9±25.3 μg/m3, varying between 1.9 and 284.6 μg/m3. Elemental analysis showed that the average H/C, O/C and N/C (molar ratio) were 1.70, 0.17, and 0.005, respectively, corresponding to an OM/OC ratio (mass ratio of organic matter to organic carbon) of 1.37. The average mass-based size distributions of OA present a promi- nent accumulation mode peaking at approximately 450 nm. The prominent presence of ultrafine particles (Dva < 100 nm) was mainly from the fresh emissions of combustion sources. A Positive Matrix Factorisation (PMF) analysis of the organic mass spectral dataset differentiated the OA into three components, including hydrocarbon-like (HOA), cooking-related (COA), and oxygenated (OOA) organic aerosols, which, on average, accounted for 26.9%, 49.7% and 23.4%, respectively, of the total organic mass. The HOA and COA likely corresponded to primary organic aerosol (POA) associated with combustion-related and cooking emissions, respectively, and the OOA components corresponded to aged secondary organic aerosol (SOA).  相似文献   

6.
近年来,雾霾天气频繁发生,大气污染已引起世界范围的殷切关注;并且成为世界共同研究的课题,其中细颗粒物污染已成为首要问题。而伴随着生活方式的转变,人们越来越注重室内空气品质,因此,室内PM_(2.5)污染已成为亟需解决的问题。通过分析室内PM_(2.5)污染来源以及对人体健康的影响,进行了关于室内PM_(2.5)暴露水平影响的实验研究。结果表明,吸烟是室内PM_(2.5)的主要来源;吸烟时会使室内PM_(2.5)暴露水平显著升高;烹饪会使室内PM_(2.5)暴露水平严重超标;人员活动产生的细颗粒物强度取决于室内的人数、活动类型、活动强度等;室内PM_(2.5)暴露水平受室外影响较大,呈现明显的正相关性。  相似文献   

7.
The electro-deoxidation of V2O3 precursors was studied. Experiments were carried out with a two-terminal electrochemical cell, which was comprised of a molten electrolyte of CaCl2 and NaCl with additions of CaO, a cathode of compact V2O3, and a graphite anode under the potential of 3.0 V at 1173 K. The phase constitution and composition as well as the morphology of the samples were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). 3 g of V2O3 could be converted to vanadium metal powder within the processing time of 8 h. The kinetic pathway was investigated by analyzing the product phase in samples prepared at different reduction stages. CaO added in the reduction path of V2O3 formed the intermediate product CaV2O4.  相似文献   

8.
The amorphous Fe78Si9B13 alloy was used as a heterogeneous Fenton catalyst in the process of phenol degradation.The influences of main operating parameters such as reaction temperature,catalyst amount,hydrogen peroxide dosage and initial pH of solution on phenol degradation rate were investigated.The maximum mineralization of phenol was achieved at 60°C,6 g/L Fe78Si9B13, 0.31 mol/L hydrogen peroxide,with an initial pH of 2.5.More than 99%of phenol was completely removed under the optimum conditions within 10 min for a solution containing 1000 mg/L of phenol.Batch experiments for solutions containing phenol con- centrations ranging from 50 to 2000 mg/L were investigated under the above conditions and the same excellent degradation rate was obtained.The Fe78Si9B13 showed better catalytic activity than iron powder and Fe 2+ .Addition of n-butannol(hydroxyl radical scavenger)decreased the degradation rate of phenol,which demonstrates that hydroxyl radicals were mainly responsible for the removal of phenol.We demonstrated that phenol may be degraded by hydroxyl radicals decomposed by hydrogen peroxide on the surface of Fe78Si9B13 and illustrated the reaction mechanism for this process.This amorphous alloy exhibited high stability in recycling experiments and showed excellent reuse performance even after continuous operations of 8 cycles.  相似文献   

9.
Nanoparticles of Ce0.6Zr0.35Y0.05O2 (CZY) solid solution have been prepared by the CTAB (hexadecyl-trimethyl ammonium bromide), CTAB-EG (ethylene glycol) templating, and CTAB-EG-NaCl (in which the pores of the precursor synthesized by the CTAB-EG method is filled by a certain amount of NaCl) method, respectively. The physical properties of these materials were characterized by means of tech-niques such as X-ray diffraction (XRD), high resolution scanning electron microscopy (HRSEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and N2 adsorp-tion-desorption measurements. The CZY samples synthesized by the above three methods display wormhole-like mesoporous morphology and cubic crystal structures. The materials are narrow in pore size distribution (averaged pore diameter = 5.3―7.1 nm), high in surface areas (95―119 m2/g), and large in pore volumes (0.16―0.18 cm3/g). It has been demonstrated that the introduction of NaCl is capable of retaining the pore structures of solid nanomaterials at high-temperature calcination.  相似文献   

10.
Nonstoichiometric ternary thermoelectric materials Ag0.84Sb1.15M0.01Te2.16 (M=Ce, Yb, Cu) were prepared by a direct melt-quench and hot press process. The carrier concentration of all the samples increased after doping. Thermoelectric properties, namely electrical conductivity, Seebeck coefficient, and thermal conductivity, were measured from 300 to 673 K. The phase transition occurring at about 418 K representing the phase transition from β-Ag2Te to α-Ag2Te influenced the electrical transport properties. The electrical conductivities of Ce and Yb doped samples increased after doping from 1.9×104 to 2.5×104 and 2.3×104 S·m−1, respectively, at 673 K. Also, at room temperature, the Seebeck coefficient of the Ce doped sample relatively increased corresponding to the high carrier concentration due to the changes in the band structure. However, all the thermal conductivities increased after doping at low temperature. Because of the higher thermal conductivity, the dimensionless figure of merit ZT of these doped samples has not been improved.  相似文献   

11.
Heterobimetallic clusters of Na8Ln(OtBu)10(OH) (Ln = ytterbium, europium, samarium and neodymium) are found to be useful catalysts for amidation of aldehydes with amines under mild conditions. The catalytic activity depends on the central metal ion in the cluster, and the order activity is ytterbium < europium < samarium ≈ neodymium. The catalysts show a wide range of scope in their activity towards amines including aliphatic amines and secondary cyclic amines such as pyrrolidine and piperidine.  相似文献   

12.
Spinel compounds LiNi0.5Mn1.3Ti0.2O4 (LNMTO) and Li4Ti5O12 (LTO) were synthesized by different methods. The particle sizes of LNMTO and LTO are 0.5–2 and 0.5–0.8 μm, respectively. The LNMTO/LTO cell exhibits better electrochemical properties at both a low current rate of 0.2C and a high current rate of 1C. When the specific capacity was determined based on the mass of the LNMTO cathode, the LNMTO/LTO cell delivered 137 mA·h·g−1 at 0.2C and 118.2 mA·h·g−1 at 1C, and the corresponding capacity retentions after 30 cycles are 88.5% and 92.4%, respectively.  相似文献   

13.
The influence of Nd addition on the glass-forming ability (GFA), microhardness, and corrosion resistance of Mg60-xCu40Ndx (x=5, 10, 15, 20, and 25, at%) alloys were investigated by differential scanning calorimetry, Vickers-type hardness tests, and electrochemical methods. The results suggest that the GFA and microhardness of the amorphous alloys increase until the Nd content reaches 20at%. The corrosion potential and corrosion current density obtained from the Tafel curves indicate that the Mg35Cu40Nd25 ternary alloy exhibits the best corrosion resistance among the investigated alloys. Notably, nanoporous copper (NPC) was synthesized through a single-step dealloying of Mg60-xCu40Ndx (x=5, 10, 15, 20, and 25) ternary alloys in 0.04 mol·L-1 H2SO4 solution under free corrosion conditions. The influence of dealloying process parameters, such as dealloying time and temperature, on the microstructure of the ribbons was also studied using the surface diffusivity theory. The formation mechanism of dealloyed samples with a multilayered structure was also discussed.  相似文献   

14.
The giant magneto-optical Faraday effect of nanometer ferromagnetic metal-semiconductor matrix Fe-ln2O3 granular films prepared by the radio frequency sputtering are studied. The result shows that the Faraday rotation angle θF value of the granular film samples with Fe volume fraction x = 35% is of the order of 10^5(°)/cm at room temperature. Temperature dependence of the Faraday rotation angle θF of Fe0.35(In2O3)0.65 granular films shows that θF value below 10 K increases rapidly with the decrease of the temperature, and when T= 4.2 K, θF value is 106(°)/cm. Through the study of the dependence of low field susceptibility on temperature and the hysteresis loops at different temperatures, it has been found that when the temperature decreases to a critical point Tp = 10 K, the transformation of state from ferro-agnetic to spin-glass-like occurs in Fe0.35(In2O3)0.65 granular films. The remarkable increase of the Faraday rotation angle θF value of Fe0.35(In2O3)0.65 granular films below 10 K seems to arise from the sp-d exchange interaction of the granular film samples in the spin-glass-like state.  相似文献   

15.
A spherical-like Ni0.6Co0.2Mn0.2(OH)2 precursor was tuned homogeneously to synthesize LiNi0.6Co0.2Mn0.2O2 as a cathode material for lithium-ion batteries. The effects of calcination temperature on the crystal structure, morphology, and the electrochemical performance of the as-prepared LiNi0.6Co0.2Mn0.2O2 were investigated in detail. The as-prepared material was characterized by X-ray diffraction, scanning electron microscopy, laser particle size analysis, charge-discharge tests, and cyclic voltammetry measurements. The results show that the spherical-like LiNi0.6Co0.2Mn0.2O2 material obtained by calcination at 900℃ displayed the most significant layered structure among samples calcined at various temperatures, with a particle size of approximately 10 μm. It delivered an initial discharge capacity of 189.2 mAh·g-1 at 0.2C with a capacity retention of 94.0% after 100 cycles between 2.7 and 4.3 V. The as-prepared cathode material also exhibited good rate performance, with a discharge capacity of 119.6 mAh·g-1 at 5C. Furthermore, within the cut-off voltage ranges from 2.7 to 4.3, 4.4, and 4.5 V, the initial discharge capacities of the calcined samples were 170.7, 180.9, and 192.8 mAh·g-1, respectively, at a rate of 1C. The corresponding retentions were 86.8%, 80.3%, and 74.4% after 200 cycles, respectively.  相似文献   

16.
Amorphous Al72Ni8Ti8Zr6Nb3Y3 powders were successfully fabricated by mechanical alloying. The microstructure, glass-forming ability, and crystallization behavior of amorphous Al72Ni8Ti8Zr6Nb3Y3 powders were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). The isothermal crystallization kinetics was analyzed by the Johnson–Mehl–Avrami equation. In the results, the supercooled liquid region of the amorphous alloy is as high as 81 K, as determined by non-isothermal DSC curves. The activation energy for crystallization is as high as 312.6 kJ·mol?1 obtained by Kissinger and Ozawa analyses. The values of Avrami exponent (n) imply that the crystallization is dominated by interface-controlled three-dimensional growth in the early stage and the end stage and by diffusion-controlled two- or three-dimensional growth in the middle stage. In addition, the amorphous Al72Ni8Ti8Zr6Nb3Y3 powders were sintered under 2 GPa at temperatures of 673 K and 723 K. The results show that the Vickers hardness of the compacted powders is as high as Hv 1215.  相似文献   

17.
In soil, CaCO3 can reduce the availability of phosphorus in arid and semi-arid regions, thereby influencing plant growth. However, the effects of soil stoichiometry of the CaCO3/available phosphorus ratio (CaCO3/AP ratio) on plant density are unknown. In this study, we examined 4 Artemisia ordosica communities located in arid and semi-arid regions, and performed a pot experiment with an orthogonal design to examine the relationships between the soil CaCO3/AP ratio and plant density. The results showed that the soil stoichiometry of the CaCO3/AP ratio had a greater effect on growth of A. ordosica than either CaCO3 or AP as single factor. The influence of the soil CaCO3/AP ratio on density of A. ordosica was related to the climatic zone and the types and/or amplitudes of increases in the soil CaCO3/AP ratio. When the soil CaCO3/AP ratio was within the same amplitude and was less than 2.5, the A. ordosica density increased in the semi-arid region, whereas the density decreased with increasing soil CaCO3/AP ratios in the arid region. In the semi-arid region, when the soil CaCO3/AP ratio was within the same amplitude and the increase in the soil CaCO3 content was greater than the increase in soil AP, the A. ordosica density increased with increasing soil CaCO3/AP ratios. This means that the relationship between the soil CaCO3/AP ratio and the A. ordosica density remained the same. In the arid region, an increase in the soil CaCO3/AP ratio as a result of increased soil CaCO3 content and decreased soil AP resulted in increased density of A. ordosica. Therefore, the relationship between soil CaCO3/AP ratios and density of A. ordosica was altered by these changes in soil chemistry. Thus, the soil stoichiometry of the CaCO3/AP ratio is an important factor affecting the density of A. ordosica in arid and semi-arid regions.  相似文献   

18.
利用南宁市环境保护监测站2010年11月5日至12(污染个案期)在南宁市区振宁花园、市监测点、区农职院、大自然花园4个有代表性的国控环境空气监测点观测到的空气质量数据,分析颗粒污染物PM10和PM2.5的浓度变化及PM2.5的主要化学组分浓度,再利用广西气象服务中心观测的天气数据分析污染个案期的气象条件。结果表明:此次长时间空气污染重,南宁市大气中的颗粒物出现显著升高,颗粒物为此次诱发长时间空气污染物的首要污染因子,颗粒物中的组分以有机质OM和硫酸盐为主;观测时段内气象因素对空气污染存在重要影响,来自湖南方向的污染气团对南宁市的长时间轻微污染也存在一定影响。  相似文献   

19.
Polycrystalline samples of a novel spin-liquid compound Tb2Ti2O7 were prepared by a standard solid-state reaction. X-ray diffraction at room temperature confirms that the synthesized compound of Tb2Ti2O7 is single phase with cubic unit cell constant a0 of 1.015 44 nm. Magnetic susceptibility measurements in the temperature range between 100 and 300 K give an effective moment of 9.44 μB and Curie-Weiss temperature of 12.68 K, respectively, indicating the dominance of antiferromagnetic interactions. However, below 50 K, the magnetic behavior of Tb2Ti2O7 deviates from Curie-Weiss law, whose origin remains suspicion.  相似文献   

20.
YVO4:Er3+, Yb3+ with varying Yb3+ concentrations were prepared by a precipitation method. The results of X-ray diffraction (XRD) show that all the samples have a tetragonal zircon structure; the calculated average crystallite sizes are in the range of 14–22 nm. The lattice constants and cell volume of the samples decrease slightly with the increase in Yb3+ concentration. The upconversion luminescence spectra of all the samples were studied under 980 nm laser excitation. The strong green emission is observed, which is attributed to the 2H11/24I15/2 and 4S3/24I15/2 transitions of Er3+, and the red emission peaks in 650–675 nm can be ignored. The emission intensity for the sample depends on the Yb3+ concentration. These results reveal that the upconversion processes of YVO4:Er3+, Yb3+ are related to the structure and the doping Yb3+ concentration of the sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号