首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 375 毫秒
1.
旋转车轮对整车气动性能的影响评价   总被引:3,自引:3,他引:0  
为研究整车轮边流场结构特征,以不同尾部造型形式的简单车体和复杂车体为研究对象,分别对静止和旋转车轮工况进行了数值研究.计算采用定常雷诺时均纳维斯托克斯方程.针对数值计算结果,通过对静止及旋转车轮周围流场的流动情况、表面压力系数、气动阻力系数和升力系数等数据的详细分析,得到了车轮旋转会对轮边流场和整车流场产生极大的影响,整车气动阻力和气动升力下降,气动性能得到改善.  相似文献   

2.
旋转孤立车轮局部流场的影响评价   总被引:1,自引:1,他引:0  
以简单孤立车轮为研究对象,在静止和旋转工况下,对有侧偏角和无侧偏角时车轮周围的流场结构进行数值分析和试验验证.计算采用定常雷诺时均Navier-Stokes方程,试验在1∶15的模型风洞中进行.不同工况下车轮周围流场、表面压力系数、气动阻力系数和升力系数等数据的分析结果表明,车轮的旋转会对流场产生巨大影响.车轮旋转使总体压差减小,气动阻力和气动升力下降,气动性能得到改善.  相似文献   

3.
针对国内某运动型多用途汽车(SUV),采用均匀设计方法,应用计算流体力学(CFD)技术,进行了车轮气动减阻研究.研究发现:使用均匀设计方法基于车轮的气动减阻能够有效地降低整车气动阻力系数,降幅可达15.9%,;前轮阻流板宽度对于针对车轮气动减阻的气动阻力系数的影响最大,前轮、后轮阻流板高度、宽度,轮辋面积对气动阻力系数存在不同的影响趋势.  相似文献   

4.
车轮辐板形状对汽车气动阻力影响分析   总被引:2,自引:0,他引:2  
汽车旋转的车轮所产生的复杂分离流对整车外部流场有重要影响.是整车气动阻力主要来源之一.应用计算流体力学对包含轮胎的整车进行仿真分析,并通过风洞试验验证了方法的可靠性.重点讨论了车轮边界条件的设置对计算结果的影响,并对同一型号的车轮,通过改变辐板的开孔个数和开孔面积分析对整车气动阻力系数的影响.结果表明,对车轮的模拟,采用旋转壁面模型比采用多参考坐标系(MRF)更为合理;当辐板开孔数不变时,随着开孔面积的增大,前、后车轮阻力系数都随之增大,整车阻力系数先增大后减小;当单个孔面积不变时,随着开孔数目的增多,后轮阻力系数随之增大,前轮、整车阻力系数先增大后减小.结果为汽车车轮的设计提供一定参考.  相似文献   

5.
以某低风阻电动汽车为研究对象,分别对有无前轮扰流板、后轮侧板及后轮导流罩展开数值研究,通过对比不同工况气动力、表面压力、流场计算结果,评估了3种低阻附件对低风阻车型气动特性的影响。研究表明:相较于基础工况,仅去掉前轮扰流板、后轮侧板、后轮导流罩以及同时去掉后轮侧板及导流罩时,该车总风阻力分别增大3.0%、6.5%、-1.8%、1.2%;低阻车总风阻力变化的主要贡献来自于前后轮区域、车底和背部;低阻附件主要通过改变车轮区域的流场间接影响车底阻塞度,进而改变车轮-车身空气动力学的相互作用,从而给低阻车整车气动特性带来影响。  相似文献   

6.
以某型轿车为基础,建立了包含后视镜、车轮及车身造型的整车外流场模型,利用Fluent软件对车轮在静止与旋转条件下的外流场进行了数值模拟,并进行对比分析。仿真结果表明:旋转车轮影响整车所受的气动阻力和气动升力,同时旋转车轮还对车身底部和尾部以及后视镜处的涡流形态和尺度有很大影响。可见,旋转车轮对整车外流场的分析结果具有重要影响,不可忽略。  相似文献   

7.
针对某A级轿车,首先通过整车风洞试验验证了计算流体力学仿真方法的可靠性,接着基于该数值计算方法,对复杂车身数模进行了封闭格栅、轮拱罩并平顺底部的简化处理,研究了车身简化对不同轮辐工况下整车气动阻力系数变化趋势的影响。结果显示,简化前后阻力系数趋势发生了改变,前后轮和车底部流场出现了明显变化。在此基础上,仅针对发动机复杂的舱内部件进行了不同程度的简化,结果显示,阻力系数趋势对舱内部件的简化也很敏感。因此,在以降低整车气动阻力为目标进行车轮局部优化时,需要谨慎地进行车身的简化工作。  相似文献   

8.
车轮宽度对轿车风阻的影响   总被引:3,自引:2,他引:1  
针对某三厢轿车,采用计算流体动力学(CFD)数值计算方法,研究车轮宽度对整车气动性能的影响.通过综合分析不同宽度孤立车轮周围的流场结构变化及具有不同宽度车轮的整车周围流场的结构特性,得到结论:车轮宽度每减小5%,单车轮模型气动阻力约减小9.2%,整车模型气动阻力约减小2%.这是因为减小车轮宽度可以减小车轮两侧的气流分离,缩小尾部涡流区域,降低车轮及汽车尾部湍流强度,从而有助于降低车轮及整车气动阻力.  相似文献   

9.
近年来,主动流动控制技术已用于汽车气动减阻研究,但较多针对无车轮的简化汽车模型开展且减阻量和净节率均有待提高。本研究针对原始及带有静止、旋转车轮的方背Ahmed汽车模型,采用数值模拟方法,在模型背部施加定常射流进行主动气动减阻规律的研究。首先,分析无射流工况下车轮对方背Ahmed汽车模型气动特性的影响;其次,重点探究有车轮工况下,射流槽布置形式、射流角度、动量系数等因素对气动阻力的影响规律。获得背部射流的最佳工况为:采用连续且距边缘较近的射流槽,射流角度45°,动量系数3%,减阻量可达9.5%,对应净节率为12.7 W。  相似文献   

10.
为分析旋转过滤技术在高过滤比条件下滤网多孔阻力对流场稳定性及过滤性能的影响,对由非渗透静止外圆筒与多孔旋转内滤筒所构成的Taylor-Couette流动进行数值模拟,该模型经实验结果对比验证,表明:1)适当降低滤筒阻力有助于稳定流场;2)阻力进一步降低将引起沿滤筒过滤速度的轴向分布不均匀,进而诱导流动失稳;3)阻力系数过低将导致涡流来回横穿滤筒.进一步讨论旋转过滤所需的最小阻力系数及有效阻力系数范围,结果发现,进料流量、过滤比及滤筒转速对最小阻力系数都有一定的影响,但临界有效阻力系数随工况基本不变.研究可为高过滤比、低跨膜压降的旋转过滤器设计及应用提供参考.  相似文献   

11.
开槽扰流器能有效地降低汽车天窗开启的风振噪声.为了更好地理解其降噪机理,构建了开槽扰流器和平直扰流器风洞试验平台,通过风洞试验来调查扰流器有无开槽对其后方壁面压力场的影响.试验结果表明,相比于平直扰流器,扰流器的开槽能够将流动再附着点提前,减少了气流的再循环区域,开槽扰流器下游流动存在初始的展向相位差,降低了壁面压力展向上的相干性,导致壁面压力在展向上具有较大的衰退性.因此开槽扰流器,对下游流动的扰动效果非常明显,能够弱化对乘员舱的激励.  相似文献   

12.
赵萌  刘振  刘印桢  刘美英 《科学技术与工程》2021,21(26):11040-11045
以300 W水平轴风力机叶片为研究对象,设计流线型凸包结构,并应用于风轮模型,结合滑移网格技术,对比研究光滑型与流线凸包型风力发电机的绕流场特性以及气动载荷特性,分析了三维绕流场内速度、压力、流线等的变化规律,以及不同风速下风力机的阻力系数及其功率的时程变化规律,探讨了流线凸包型与光滑型风轮在不同风速下运行时绕流特性的差异。结果表明:流线型凸包对流场有较好的改善结果;当风速增大时有明显的减阻效果,最大减阻率为19.53%,但其波动量增加为1.51%;凸包型风轮输出功率明显高于光滑型风轮,但随着风速增加,功率增加率也逐渐减弱。研究结果对水平轴风力机非定常气动特性研究及应用具有重要意义和价值。  相似文献   

13.
针对目前汽车气动减阻中基于工程师经验的试凑法所存在的盲目性和低效率,以及气动优化设计中车身曲面难于参数化等问题,将自由变形方法引入汽车气动减阻优化设计中,为减阻优化设计提供一种快速、有效的参数化方法.文中以外形简单的Ahmed模型为研究对象,根据正交试验设计构建样本空间,采用FFD方法对各样本点模型进行参数化,通过CFD仿真获得各样本的气动阻力系数;建立3种常用的近似模型,选择可信度最高的RBF模型构建近似模型,采用多岛遗传算法求解近似模型的最优值,根据优化结果重新构建最优模型并采用CFD计算其气动阻力系数.计算结果显示优化后的Ahmed模型气动阻力系数减少了51.96%.   相似文献   

14.
为降低汽车行驶过程中的气动阻力,以尾部倾角为25°的Ahmed类车体模型为研究对象,提出在其尾部垂直面下边缘添加不同长度柔性飘带的控制方法,采用格子玻尔兹曼方法与有限元分析相结合的流固耦合计算方法,探讨了柔性飘带长度对汽车气动阻力的影响。首先对汽车模型进行格子尺度优化,得到模型的空气阻力系数;然后研究了柔性飘带对汽车气动阻力的影响;最后对模型尾部流场、柔性飘带附近流场以及模型尾部表面压力系数进行了分析。仿真结果表明:在模型尾部添加适当长度的柔性飘带,改善了尾流结构,提升了尾部表面压力,减小了车体的压差阻力,减阻率最高为12.25%。  相似文献   

15.
高速列车的转向架区域是气动减阻研究的重点.通过样条曲线方法建立了高速列车底部结构的7参数化模型,采用计算流体力学及超拉丁立方抽样试验设计方法,研究了底部结构参数对高速列车气动阻力的影响规律.结果表明:底部结构参数对于三车总阻力、头、中、尾各节车气动阻力的影响分别为27%、37%、39%和22%,三车气动阻力对裙板高度、排障器厚度、舱前缘倒角最为敏感.但头、中、尾车影响规律不同于三车,有必要考虑对头、中、尾三车底部结构分别进行气动设计,以达到最优的减阻效果.底部结构参数主要影响列车底部平均流速改变底部结构所受气动阻力,进而影响高速列车气动阻力.  相似文献   

16.
利用大涡模拟方法,研究了激励频率对三维地面车辆气动阻力的影响规律及其控制机理.流动分析结果表明:合成射流布置在车辆顶部和斜背交界处,在不同激励频率下实现车辆减阻,当频率低于90 Hz时,增大频率,阻力增大;频率高于90 Hz,随着频率的增大,阻力减小;频率达到1 500Hz时,阻力不再减小.斜背附着距离和雷诺应力分布的差异解释了气动力随不同激励频率变化的原因.不同激励频率下的频谱分析表明:合成射流控制了斜背动态附着现象,导致速度、压力和阻力系数频谱峰值皆对应激励频率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号