首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
图G的强边染色是指对图G的边进行染色,使得距离不超过2的任意两条边染不同的颜色. 任何一个平面图都可用4Δ+4种颜色进行强边染色. 证明了当平面图没有k-圈(4≤k≤10)且3-圈不相交时(即每个顶点至多关联一个3-圈), 必定存在一个3Δ+1种颜色的强边染色.  相似文献   

2.
图的强边染色是在正常边染色的基础上,要求每个色类的导出图是一个匹配。本文通过构造法,研究了路的幂图的强边色数至多是9,圈的幂图的强边色数至多是14。  相似文献   

3.
针对1985年Erdǒs和Nesetǐil提出的强边一染色猜想:令G为图,若△(G)为偶数,则Sx’(G)≤5△^2(G)/4;若△(G)为奇数,则Sx’(G)≤5△^2(G)/4-A(G)/2+1/4。证明了对于令G为△(G)=4的图,若δ(G)≤3或围长g(G)≤4,则Sx’(G)≤21。  相似文献   

4.
研究了3种网格图的剖分图的强边着色.网格图的剖分图是指用一个长为2的路去替换网格图的每条边.具体给出了六边形、四边形、三角形的网格剖分图的一种着色方法,以此为基础证明了Sχ′(Γs6)=4,Sχ′(Γs4)=5,Sχ′(Γs3)=7.  相似文献   

5.
研究了一类广义Petersen图P(3n, n)的强边染色问题,得到的结果为:6≤χs′(P(3n, n))≤8,这里χs′(P(3n,n))表示P(3n, n)的强边色数.特别地,当n为偶数,并且n≡1或2(mod 3)时,χs′(P(3n, n))=6.  相似文献   

6.
简单图的全染色是图的染色理论中的一个重要问题,为了深入研究图的全色数猜想与图的最大平均度之间的关系,我们利用差值转移方法证明了最大平均度小于4的简单图的全色数满足全色数猜想;同时,还证明了最大度不小于12且最大平均度小于6的简单图G的全色数不超过Δ(G)+3.  相似文献   

7.
利用差值转移方法研究了不含3圈,4圈的平面图的无圈边染色,证得了它们的无圈边色数不超过Δ(G)+2。  相似文献   

8.
图的无圈边染色是图的染色理论中的一个重要问题,2001年,Alon等猜想任意简单图G的无圈边色数都不超过△(G)+2,其中△(G)为图G的最大顶点度。为了研究该猜想对平面图是否成立,利用差值转移方法,证明了不包含三角形的平面图G的无圈边色数不超过△(G)+3.  相似文献   

9.
给出了列表强边染色的定义,证明了若G为d(x)+d(y)≤5,则强边选择数Sχ′l(G)≤6.  相似文献   

10.
证明了若G为△(G)=3的图,则强边选择数SХl'(G)≤11.  相似文献   

11.
图的相邻强边着色数   总被引:1,自引:2,他引:1  
如果在一个图的正常边着色中,相邻两点关联的边集所着的颜色集合不同,则称此正常边着色为相邻强边着色.对图G进行相邻强边着色所需要的最小色数称为G的相邻强边着色数,记作X'as(G).给出了相邻强边着色数的两个上界:一是对于任何d-正则图G(d≥3),X'as(G)≤16d;二是如果图G有两个边不交的完美匹配,则X'aa(G)≤3△(G) 1.  相似文献   

12.
一类正则图的邻强边染色   总被引:1,自引:0,他引:1  
研究一类正则图G(n,n,r)(n=1,2(mod 3))的邻强边染色. 用构造性方法给出了一类正则图的邻强边染色, 验证了对|V(G)|≥3的连通图G(V,E)(G(V,E)≠C5), 有Δ(G)≤χ′αs(G)≤Δ(G)+2成立.  相似文献   

13.
图G的强边着色是正常边着色且任何长为3的路的边不着双色.图G的强边色数是G的所有强边着色中使用色数的最小者,记为χ′s(G).证明了如果图G是平面图且满足g(G)≥14,则χ′s(G)≤|(5Δ2-2Δ+1)/4|,其中g(G)表示图G的围长.  相似文献   

14.
一类正则二部图的邻强边染色   总被引:2,自引:0,他引:2  
研究了一类正则二部图的邻强边染色,验证了文献[1]中猜想是正确的.  相似文献   

15.
图的无圈边染色是图的染色理论中的一个重要问题.2001年,Alon等猜想任意简单图G的无圈边色数都不超过Δ(G)+2,其中Δ(G)为图G的最大顶点度.为了深入研究该猜想对平面图是否成立,利用差值转移方法并结合最小反例图的一些结构性质,证明了:不包含三角形的平面图G,如果其最大顶点度不小于6,则其无圈边色数不超过Δ(G)+3.  相似文献   

16.
张东翰 《河南科学》2014,(2):150-152
蛛网图是一个重要的网络拓扑结构,研究它的染色对于网络权的分配和通信网络的设计有重要的指导作用.利用穷举法和组合分析法讨论了蛛网图的邻强边染色,得到了蛛网图的邻强边色数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号