首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
中国书法是一门独特的艺术,它的艺术魅力是通过富有弹性的毛笔表现汉字的各种造型,抒发作者的性情而产生的。两千多年前,书法就装饰在陶器上,经过历代匠师的艺术耕耘,陶瓷书法装饰创意新颖,形式多样,给人以美的享受。本文试图在追溯陶瓷书法历史沿革的基础上,浅论书法在陶瓷装饰上的各种作用。  相似文献   

2.
陶瓷与书法虽是两门独立艺术,但两者自古以来就有着深厚的历史渊源,具有相通的艺术特征。现代条件下陶瓷与书法艺术亦交相辉映,不同的陶瓷造型可以采用与其风格相协调的书法来加以装饰,使陶瓷艺术获得锦上添花的效果。虽然书法艺术在陶瓷中的运用仅处于辅助地位,但其作用和意义不容忽视,值得从事陶瓷艺术的人们加以关注和应用。  相似文献   

3.
钛/羟基磷灰石涂层的电沉积过程及其结构特征   总被引:18,自引:1,他引:17  
采用电沉积方法在钛金属基底上形成磷酸钙盐涂层,涂层经低温碱液处理获取羟基磷灰石涂层。研究了电流密度、主盐浓度、电解液温度、沉积电量、低温碱液处理对涂层表面形貌的影响,并用SEM、ZRD和IR对涂层的组成和结构进行分析。结果表明:电沉积磷酸钙盐涂层经低温碱液处理后得到纯的羟基磷灰石涂层,羟基磷灰石晶体呈针状结构;随电流密度、主盐浓度的增加,晶粒变粗,随电解液温度的升高,晶体发生变化,出现鳞片状结构;涂层质量随沉积电量的增加而增长。  相似文献   

4.
CVD金刚石涂层刀具在石墨加工中的应用   总被引:1,自引:0,他引:1  
CVD金刚石涂层是一种新型材料,相比于硬质合金具有更高的切削性能,适用于有色金属和非金属材料的切削加工.本文利用CVD金刚石涂层刀具和硬质合金刀具对石墨进行切削试验,将两种刀具寿命作比较,结果表明:CVD涂层刀具有高硬度、低摩擦系数、高耐磨和高导热的优异性能,与未涂层刀具相比,大幅提高了刀具的耐用度.  相似文献   

5.
用射频CVD法在石英玻璃上生长微晶金刚石薄膜   总被引:1,自引:0,他引:1  
利用射频等离子体化学气相沉积法(r,f.pcvD),在石英玻璃上生长出透明均匀的薄膜,经过电子衍射,激光喇曼散射,可见光透过率等测试,证明是金刚石薄膜,通过透射电子显微镜看不到颗粒。  相似文献   

6.
利用融盐热歧化反应进行了氧化铝陶瓷材料表面钛金属的动力学研究。结果表明,氧化铝陶瓷表钛膜的厚度随着反应温度和反应时间的增加而增加,膜的厚度与反应时间成很好的线性关系,沉积速率与融盐中K2TiF6的起始浓度成线性关系,沉积过程是受融 盐与氧化铝陶瓷基体之间的界面反应控制,其沉积过程的活化能为137.6KJ/mol。  相似文献   

7.
刘海英 《科技信息》2009,(20):222-222
本文通过分析汉字与陶瓷装饰的关系,来诠释汉字作为一种装饰手法运用在陶瓷载体上所体现出独特的美感,从而更好地展现陶瓷艺术的魅力。  相似文献   

8.
利用融盐热歧化反应进行了氧化铝陶瓷材料表面沉积钛金属的动力学研究.结果表明,氧化铝陶瓷表面钛膜的厚度随着反应温度和反应时间的增加而增加,膜的厚度与反应时间成很好的线性关系,沉积速率与融盐中K2TiF6的起始浓度成线性关系,沉积过程是受融盐与氧化铝陶瓷基体之间的界面反应控制.其沉积过程的活化能为137.6KJ/mol.  相似文献   

9.
首先通过差热-失重分析和XRD测试手段对反应热喷涂Al+TiO2+H3BO3混合粉体以制备Al2O3/TiB2复合陶瓷涂层的可行性进行了分析.然后对喷涂后试样涂层的耐磨性进行了研究.结果表明:Al+TiO2+H3BO3混合粉体差热-失重分析和在1200℃烧结后XRD测试分析均表明完全可以反应生成所需的Al2O3/TiB...  相似文献   

10.
摘枝花在陶瓷装饰中,就整体而言,是必须具备一定的完整性,所指的完整性并不是指纹样中的某一花或某一叶必须完全落到实处、有始有终地交待清楚,那就过于写实了,同时也就谈不上"花"这个概念了。所谓摘枝花的完整性主要是指,把装饰以及造型、主题以及背景、黑白关系及色彩作为一个整体来设计。  相似文献   

11.
化学气相沉积(CVD)TiN涂层在模具上涂复3~10μm可使模具寿命提高3~4倍。本文研究指出:沉积温度对沉积速率、涂层硬度及对基体Cr12MoV硬度和尺寸都有影响。在950~1000℃间可以得到接近化学计量的TiN,其硬度Hv(1)≈20000N/mm~2,基体尺寸变化在万分之五以内。  相似文献   

12.
本文研究了N_2/H_2比对氮化钛涂层的晶格常数、硬度、沉积速率的影响,在N_2/H_2≈1/2时得到组成近似于化学计量的氮化钛,涂层硬度和沉积速率最高,涂层模具的寿命比不涂层的可提高4倍。  相似文献   

13.
14.
利用化学气相沉积法在C/C复合材料表面制备了SiC涂层,并借助扫描电子显微镜和X射线衍射等手段对不同位置沉积产物的微观形貌、相组成以及厚度进行了测试,推导出了沉积位置与反应气源过饱和度的定性关系,分析了反应气源过饱和度对SiC涂层形貌、晶粒尺寸以及涂层厚度的影响.研究结果表明:沿着沉积炉内气体流动的方向,反应气源的过饱和度逐渐降低,沉积所得pSiC涂层形貌由颗粒状向须状转变,晶粒尺寸与涂层厚度逐渐减小。  相似文献   

15.
微波等离子体化学气相沉积合成TiN超细颗粒   总被引:1,自引:0,他引:1  
热力学计算表明,H2,N2的过量有助于提高TiN的产率,但能耗也相应增加。为此考察了温度,流量,TiCl4携带量,混合方式对产物性能的影响。结果表明,流量增加,温度升高,TiCl4携带量增加,混合愈好,则产物粒径愈小。在此基础上采用微波等离子体化学气相沉积法,合成了粒径为123-284nm的TiN超细颗粒  相似文献   

16.
17.
In this study,TiN films were deposited on SiO2 substrates by Atomic Layer Deposition(ALD) using TiCl4and NH3 as precursors. Properties and morphology of the TiN films were characterized by different methods.Using Grazing Incidence X-Ray Diffraction(GIXRD),TiN films demonstrated polycrystalline structure with(111)preferred orientation. Film thickness was measured by Spectroscopic Ellipsometry(SE) and a stable growth rate of 0.0178 nm/cycle was reached after 500 deposition cycles,which was consistent with the essence of ALD as a surface-saturated self-limiting reaction. Film resistivity measured by a four-point probe continuously decreased with increasing deposition cycles until it reached the minimum value of 300μΩ cm at 5000 deposition cycles with a thickness of 87.04 nm. The surface roughness and morphology of the TiN films at different deposition cycles ranging from 50 to 400 were analyzed by Atomic Force Microscopy(AFM). The AFM results indicated that the initial film growth follows the Stranski-Krastanov mode.  相似文献   

18.
19.
金属有机化合物化学气相淀积含钛硬质涂层的性能研究   总被引:1,自引:0,他引:1  
在用文题淀积方法制备出氮化钛、碳氮化钛和碳氮氧化钛硬质涂层的基础上,用表面分析手段分别进行了成分、结构分析、形貌观察和硬度测定。结果表明:以二乙胺基钛为原料可分别在773K和973K淀积氮化钛和碳氮化钛涂层;用钛酸异丙酯和钛酸丁酯可分别在973K和1073K获得碳氮氧化钛涂层。所得的涂层表面光洁度高、与基体附着性好、硬度满足实用要求。相比于普通化学气相淀积方法,本法在制备硬质涂层上有两大优点:(1)淀积温度降低,扩大了基体的选用范围;(2)固溶体涂层的获得扩大了涂层的适用范围。  相似文献   

20.
根据化学气相沉积法的工艺特点,对C/C复合材料SiC涂层的制备过程进行了数学建模和有限元模拟,得出了反应器内以及试样表面反应物浓度的变化规律,并且获得了反应器内反应物浓度与沉积产物间的关系.结合实验分析,验证了SiC涂层晶粒尺寸的变化和沉积形貌的演变是由于反应气体浓度分布随位置变化造成的:沿着反应气体流动的方向,反应物浓度逐渐降低,沉积得到的SiC晶粒尺寸逐渐减小,沉积形貌由堆积岛状到颗粒状再到晶须状逐级演变.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号