首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
G-protein control of inositol phosphate hydrolysis   总被引:4,自引:0,他引:4  
B Michell  C Kirk 《Nature》1986,323(6084):112-113
  相似文献   

2.
Glutamate stimulates inositol phosphate formation in striatal neurones   总被引:11,自引:0,他引:11  
F Sladeczek  J P Pin  M Récasens  J Bockaert  S Weiss 《Nature》1985,317(6039):717-719
The major excitatory amino acids, glutamate (Glu) and aspartate (Asp), are thought to act at three receptor subtypes in the mammalian central nervous system (CNS). These are termed quisqualate (QA), N-methyl-D-aspartate (NMDA) and kainate (KA) receptors according to the specific agonist properties of these compounds revealed by electrophysiological studies. Although Glu has been shown to stimulate cyclic GMP formation in brain slices, direct regulation of second messenger systems (cyclic AMP, Ca2+ or inositol phosphates) subsequent to activation of excitatory amino-acid receptors, has not been extensively studied. Here we demonstrate that in striatal neurones, excitatory amino acids, but not inhibitory or non-neuroactive amino acids, induce a three- to fourfold increase in inositol mono-, di- and triphosphate (IP, IP, IP) formation with the relative potency QA greater than Glu greater than NMDA, KA. The Glu-evoked formation of inositol phosphates appears to result principally from actions at QA as well as NMDA receptors on striatal neurones. Our results suggest that excitatory amino acids stimulate inositol phosphate formation directly, rather than indirectly by the evoked release and subsequent actions of adenosine or acetylcholine.  相似文献   

3.
4.
Many receptors, in response to ligand activation, trigger inositol phospholipid breakdown, which leads to rapid intracellular responses. The sustained activation of this pathway is believed to be at least one of the factors involved in the stimulation of cell growth and there has been much speculation that certain oncogenes use this pathway to effect uncontrolled cellular proliferation. It has been suggested, by analogy with the receptor-mediated control of adenylate cyclase, that the receptor stimulation of inositol phospholipid metabolism is mediated through a guanine nucleotide regulatory protein (G-protein) called Gp (or Np). Although such a species has not been identified, there is now strong experimental evidence that this process is mediated by a G-protein distinct from the stimulatory and inhibitory G-proteins (Gs and Gi, respectively). The ras genes code for a plasma membrane protein, p21, whose only known biochemical property is a high-affinity GTPase activity. We show here that the expression of normal p21N-ras in NIH 3T3 fibroblasts leads to the coupling of certain growth factor receptors to stimulated inositol phosphate production. We propose that the N-ras proto-oncogene encodes a protein which couples the receptors for certain growth factors to the stimulation of phospholipase C. Thus, N-ras p21 may be the putative Gp or a functionally related protein.  相似文献   

5.
6.
磷酸酯的水解是一种非常重要的化学和生化反应.在众多磷酸酯中,磷酸二酯的性质尤其引起了科学家们的研究兴趣.腺苷3’,5’-磷酸单酯(CAMP)是细胞内的第二信使,在视觉、肌肉收缩、神经传递、细胞生长及变异上起着至关重要的作用.如果体内第二信使的浓度过低,将可能诱发一  相似文献   

7.
D J Storey  S B Shears  C J Kirk  R H Michell 《Nature》1984,312(5992):374-376
Many receptors for hormones, neurotransmitters and other signals cause hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and effect a rise in cytosolic Ca2+ concentration. The inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) liberated during PtdIns(4,5)P2 breakdown seems to serve as a second messenger that activates the release of Ca2+ from a nonmitochondrial intracellular compartment. As expected if it is an important intracellular messenger, Ins(1,4,5)P3 is relatively rapidly degraded, both within stimulated cells and when added to homogenates of blowfly salivary gland or to permeabilized, but not intact, hepatocytes. Here we report that the dephosphorylation reactions responsible for the conversion of Ins(1,4,5)P3 to free inositol in rat liver are catalysed by two or more enzymes, and that these reactions are distributed between the plasma membrane and cytosol. The Ins(1,4,5)P3 5-phosphatase and inositol 1-phosphate (Ins(1)P) phosphatase of liver appear similar to enzymes described previously in erythrocytes and brain.  相似文献   

8.
R F Irvine  A J Letcher  J P Heslop  M J Berridge 《Nature》1986,320(6063):631-634
Recent advances in our understanding of the role of inositides in cell signalling have led to the central hypothesis that a receptor-stimulated phosphodiesteratic hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) results in the formation of two second messengers, diacylglycerol and inositol 1,4,5-trisphosphate (Ins(1,4,5)P3). The existence of another pathway of inositide metabolism was first suggested by the discovery that a novel inositol trisphosphate, Ins(1,3,4)P3, is formed in stimulated tissues; the metabolic kinetics of Ins(1,3,4)P3 are entirely different from those of Ins(1,4,5)P3 (refs 6, 7). The probable route of formation of Ins(1,3,4)P3 was recently shown to be via a 5-dephosphorylation of inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4), a compound which is rapidly formed on muscarinic stimulation of brain slices, and which can be readily converted to Ins(1,3,4)P3 by a 5-phosphatase in red blood cell membranes. However, the source of Ins(1,3,4,5)P4 is unclear, and an attempt to detect a possible parent lipid, phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3), was unsuccessful. The recent discovery that the higher phosphorylated forms of inositol (InsP5 and InsP6) also exist in animal cells suggested that inositol phosphate kinases might not be confined to plant and avian tissues, and here we show that a variety of animal tissues contain an active and specific Ins(1,4,5)P3 3-kinase. We therefore suggest that an inositol tris/tetrakisphosphate pathway exists as an alternative route to the dephosphorylation of Ins(1,4,5)P3. The function of this novel pathway is unknown.  相似文献   

9.
One model of synaptic transmission suggests that transmitters modify postsynaptic permeability through the intermediary of cyclic AMP. Thus, serotonin (5-hydroxytryptamine) evokes in molluscan neurones a decrease in a voltage-dependent K+ conductance which in turn generates a slow inward current when studied in steady voltage-clamp conditions. The serotonin-induced increase of the plateau phase of the spike of an Aplysia sensory neurone can be mimicked by both intracellularly injected cyclic AMP and extracellularly applied phosphodiesterase inhibitors, suggesting that cyclic AMP mediates the effect. We have tested whether a similar mechanism could account for the serotonin slow inward current in identified snail neurones and have found that the intracellular injection of cyclic AMP, but not of cyclic GMP or 5'-AMP, evokes a slow inward current showing similar voltage dependence, inversion potential and ionic properties to the serotonin slow inward current. Phosphodiesterase inhibitors at low concentrations (1-20 microM) potentiate the serotonin slow inward current and at higher concentrations evoke by themselves an inward current, partially or totally occluding the serotonin and cyclic AMP currents. Finally, we have found that in homogenates of pooled identified snail neurones serotonin stimulates the adenylate cyclase, increasing its activity by 50-100%.  相似文献   

10.
11.
J M Hughes  F Murad  B Chang  R L Guerrant 《Nature》1978,271(5647):755-756
  相似文献   

12.
13.
J G Schofield 《Nature》1967,215(5108):1382-1383
  相似文献   

14.
15.
An inositol tetrakisphosphate-containing phospholipid in activated neutrophils   总被引:15,自引:0,他引:15  
Inositol (1,4,5)triphosphate (InsP3) and tetrakisphosphate (InsP4) have been observed in a variety of cell types and have been proposed to play roles in the receptor-mediated rise in intracellular Ca2+ (refs 2, 3). Recently, they have been shown to act synergistically in the activation of a Ca2+-dependent K+ channel in lacrimal acinar cells. InsP3 is the product of phospholipase C (PLC) action on phosphatidylinositol 4,5-bisphosphate (PtdInsP2) whereas InsP4 is believed to arise from phosphorylation of InsP3 by a cytosolic kinase. Although sought as a source for InsP4, PtdInsP3 has not been identified in any specific cell type. There were early reports of InsP4-containing phospholipids in crude extract from bovine brain, but this finding was later withdrawn. Recently, however, a membrane-bound enzyme (Type 1 PI kinase) which adds phosphate onto the 3 position of inositol phospholipids has been identified and the phosphatidylinositol-3-phosphate (PtdIns(3)P) product characterized. This suggests that several forms of phosphoinositides may exist and could be precursors for some of the variety of soluble inositol phosphate products which have been reported in recent years. Here we report the appearance of another novel phosphoinositide containing four phosphates, phosphatidylinositol trisphosphate (PtdInsP3) which we find only in activated but not in unstimulated neutrophils from human donors.  相似文献   

16.
17.
18.
19.
本文首次报道了以620.0—665.0um范围内任一波长激光双光子激发模分子或多光子激发锂原子,获得锂分子紫外扩散带受激辐射.文中对有关的辐射特性及激发机制进行了讨论.  相似文献   

20.
Lasers are usually described by their output frequency and intensity. However, laser operation is an inherently nonlinear process. Knowledge about the dynamic behaviour of lasers is thus of great importance for detailed understanding of laser operation and for improvement in performance for applications. Of particular interest is the time domain within the coherence time of the optical transition. This time is determined by the oscillation period of the laser radiation and thus is very short. Rigorous quantum mechanical models predict interesting effects like quantum beats, lasing without inversion, and photon echo processes. As these models are based on quantum coherence and interference, knowledge of the phase within the optical cycle is of particular interest. Laser radiation has so far been measured using intensity detectors, which are sensitive to the square of the electric field. Therefore information about the sign and phase of the laser radiation is lost. Here we use an electro-optic detection scheme to measure the amplitude and phase of stimulated radiation, and correlate this radiation directly with an input probing pulse. We have applied this technique to semiconductor quantum cascade lasers, which are coherent sources operating at frequencies between the optical (>100 THz) and electronic (<0.5 THz) ranges. In addition to the phase information, we can also determine the spectral gain, the bias dependence of this gain, and obtain an insight into the evolution of the laser field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号