首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Studies on transgenic mice expressing immunoglobulins against self-antigens have shown that self-tolerance is maintained by active elimination (clonal deletion), functional inactivation (clonal anergy) of self-reactive B cells, or a combination of both. We have established and characterized a transgenic mouse line expressing an anti-erythrocyte autoantibody. In contrast to other autoantibody transgenic lines, about 50% of the animals of this transgenic line suffer from autoimmune disease, indicating a loss of self-tolerance. Here we show that peritoneal Ly-1 B cells (also known as B-1 cells) are responsible for this autoimmune disease in our transgenic mice. A few self-reactive Ly-1 B cells that have somehow escaped the deletion mechanism expand in the peritoneum because of the absence of self-antigen. These Ly-1 B cells are eliminated in vivo by apoptosis once exposed to self-antigen. On the basis of these results we propose a novel autoantibody production mechanism whereby self-reactive B cells sequestered in compartments free of self-antigens may survive, proliferate and be activated for generation of pathogenic autoantibodies in autoimmune diseases.  相似文献   

2.
A given B lymphocyte makes an antibody containing either kappa- or lambda-light chains, but not both. This isotype exclusion is effected at the level of the rearrangement of the immunoglobulin gene segments, although by an unknown mechanism. An attractive possibility is that, following productive rearrangement of one of the light-chain loci, the newly synthesized light-chain polypeptide inhibits DNA rearrangement for the other isotype. To test such feedback regulation, we have created transgenic mice carrying a rearranged lambda 1-gene. By contrast with the B cells in normal newborn mice which are mainly kappa+lambda-, the B cells in the newborn transgenic mice express lambda- but not kappa-chains. We propose that the synthesis of any light chain, be it kappa or lambda, that allows expression of IgM on the cell surface results in a cessation of all V-J joining. Interestingly, the limited light-chain repertoire of the transgenic mice does not persist and most adult B cells express endogenous kappa-rearrangements and down-regulate the transgene.  相似文献   

3.
Virus-induced autoantibody response to a transgenic viral antigen   总被引:12,自引:0,他引:12  
The induction of autoantibodies and their possible role in the pathogenesis of autoimmune disease are poorly understood. Involvement of infectious agents has been suspected, but direct evidence is sparse. Whether immunological unresponsiveness to self by antibody-forming B cells is maintained by clonal abortion, clonal anergy or suppression, or how the scenario of interactions between helper T cells, B cells and antigen-presenting cells is distorted in autoantibody responses, is being analysed and widely debated. To evaluate tolerance of neutralizing B-cell responses we used transgenic mice expressing the cell membrane associated glycoprotein (G) of vesicular stomatitis virus (VSV) as self-antigen. We show that autoantibodies to VSV-G cannot be induced by VSV-G in adjuvant or by recombinant vaccinia virus expressing VSV-G, but are triggered by infection with wild-type VSV. The data show that helper T-cell tolerance is crucial in maintenance of B-cell non-reactivity and that cognate T-B recognition is necessary to break tolerance of self-reactive B cells. These results may help to understand mechanisms of virus-induced autoimmunity.  相似文献   

4.
In B cells the loci encoding immunoglobulin chains usually show allelic exclusion; a given B cell transcribes and translates only one productively rearranged allele of the heavy and light chain loci. This ensures that each B cell expresses only one antigen receptor. The loci encoding T-cell receptor (TCR) alpha- and beta-genes may behave similarly. We have previously reported that the expression of a transgenic TCR beta-chain prevents functional and nonfunctional V beta rearrangements in the endogenous beta-chain loci but not D beta J beta rearrangements. We have also been unable to detect the expression of the TCR gamma-chain locus in thymocytes of these mice (unpublished observations). To study the mechanisms involved in forming a mature T-cell repertoire further, we have constructed mice expressing alpha- and beta-TCR transgenes derived from a cytotoxic T-cell clone that is specific for the male antigen H-Y in the context of H-2Db MHC molecules. Here we show that in these mice rearrangement of endogenous alpha-chain loci is also suppressed, although to a lesser extent than rearrangement of beta-chain loci. In addition, in male alpha beta TCR transgenic mice we observed T-cell clones which had deleted both transgenic alpha- and beta-chain genes and expressed endogenous alpha- and beta-chain TCR genes. These cells are presumably derived from rare thymocytes that leave the male thymus because their TCR no longer recognizes self antigen. The vast majority of CD4+8+ nonmature thymocytes expressing alpha- and beta-transgenes are deleted in the male thymus.  相似文献   

5.
Regulation of human insulin gene expression in transgenic mice   总被引:1,自引:0,他引:1  
Insulin is a polypeptide hormone of major physiological importance in the regulation of fuel homeostasis in animals (reviewed in refs 1,2). It is synthesized by the beta-cells of pancreatic islets, and circulating insulin levels are regulated by several small molecules, notably glucose, amino acids, fatty acids and certain pharmacological agents. Insulin consists of two polypeptide chains (A and B, linked by disulphide bonds) that are derived from the proteolytic cleavage of proinsulin, generating equimolar amounts of the mature insulin and a connecting peptide (C-peptide). Humans, like most vertebrates, contain one proinsulin gene, although several species, including mice and rats, have two highly homologous insulin genes. We have studied the regulation of serum insulin levels and of insulin gene expression by generating a series of transgenic mice containing the human insulin gene. We report here that the human insulin gene is expressed in a tissue-specific manner in the islets of these transgenic mice, and that serum human insulin levels are properly regulated by glucose, amino acids and tolbutamide, an oral hypoglycaemic agent.  相似文献   

6.
The transgenic mouse line M54 was generated by introducing a functionally-rearranged immunoglobulin mu heavy-chain gene into the germ line of a C57B1/6 inbred mouse. Previous examination of the antibodies produced by B-cell hybridomas derived from transgenic M54 mice showed that the presence of the mu transgene grossly altered the immunoglobulin repertoire of unimmunized animals, suggesting that these mice suffer from a serious immunoregulatory perturbation. Studies presented here introduce a new perspective on this functional defect. We show that the lymphoid tissues from these transgenic mice lack virtually all conventional bone-marrow-derived B cells, which constitute the predominant B-cell population in normal mice and which typically produce primary and secondary antibody responses to T-cell-dependent antigens. Moreover, the bone marrow from transgenic M54 mice is depleted of pre-B lymphocytes, indicating a serious defect in early B-cell lymphopoiesis. In contrast, CD5 (Ly-1) B cells, a second B-cell population displaying a characteristic set of cell surface markers which are derived from distinct precursors in the peritoneum, are represented at normal frequencies in these transgenic mice. Thus, the presence of the rearranged immunoglobulin heavy-chain transgene in M54 mice results in an unexpected selective developmental defect that impairs the development of bone-marrow-derived pre-B and B cells without affecting Ly-1 B cells.  相似文献   

7.
The development of methods for introducing foreign genes into the germ line of mice provides an approach for studying mechanisms underlying inducible and developmental gene regulation. Transgenic animals expressing foreign genes have thus been used to test models of the role played by specific DNA sequences in determining cell-specific expression. Results from these experiments suggest that tissue-specific expression is the consequence of a cis-acting regulatory sequence. However, these results do not exclude the possibility that cell-specific expression of some genes might be 'coded' by combinations of regulatory elements. We have previously described the production of transgenic mice from eggs microinjected with metallothionein-I/growth hormone (MGH) fusion genes, and now demonstrate that the juxtaposition of sequences from two different genes can be deciphered by cells to generate novel tissue specificities. Although expression of the endogenous metallothionein and growth hormone genes has not been detected in neuronal cells, transgenic mice clearly express an MGH fusion gene in a restricted subset of neurones. These results suggest a model in which tissue-specific patterns of expression of certain genes are determined by combinations of cis-acting regulatory sequences.  相似文献   

8.
M Nishi  Y Ishida  T Honjo 《Nature》1988,331(6153):267-269
The growth of mature T lymphocytes is regulated by interaction between interleukin-2 (IL-2) and its receptor. Three distinct binding sites for IL-2, namely low- (Kd 10 nM), intermediate- (Kd 100 pM) and high- (Kd 10 pM) affinity sites, have been found on human and primate T lymphocytes. Chemical crosslinking of labelled IL-2 to human T cells shows that two polypeptide chains, p55 (L chain) and p75 (H chain), bind IL-2 with low and intermediate affinities respectively. The high-affinity binding was shown to arise from ternary complex formation of IL-2, L and H chains. Construction of mutants of the L-chain complementary DNA indicated that the L chain is not directly involved in growth signal transduction. Nevertheless, expression of the IL-2 receptor L chain is tightly regulated by antigen or mitogen stimulation. To investigate the L chain function, we have produced transgenic mice using human L-chain cDNA of the IL-2 receptor under the control of a constitutive promoter. Studies on the L-chain transgenic mice showed that functionally active IL-2 receptors with high affinity were expressed on unstimulated spleen and thymus cells. The results indicate that the H chain of the IL-2 receptor is constitutively expressed in T cells.  相似文献   

9.
U Storb  K A Denis  R L Brinster  O N Witte 《Nature》1985,316(6026):356-358
Recent experiments have shown that the microinjected kappa-chain gene of transgenic mice is expressed in a tissue-specific fashion only in B lymphocytes. The next step was to determine whether, within the B-lymphocyte lineage, the kappa-chain gene was expressed in a normal developmental fashion. Normally, only mu heavy(H)-chain genes, and not kappa-chain genes, are expressed in pre-B cells. To obtain cloned cell lines derived from early cells of the B-cell lineage, we transformed bone marrow cells from kappa-transgenic mice with Abelson murine leukaemia virus (A-MuLV) and tested the resultant cell lines for the retention of the kappa transgene and its expression in RNA and protein. We found that cells with the pre-B phenotype exist in kappa-transgenic mice. We further observed that in A-MuLV-transformed cell lines from a kappa-transgenic mouse with a high copy number of the transgene, the proportion of cell lines expressing kappa (transgenic kappa) was higher than in cell lines from normal or low copy number transgenic mice.  相似文献   

10.
G Lamppa  F Nagy  N H Chua 《Nature》1985,316(6030):750-752
Many of our most important crop plants are monocotyledons, including wheat, corn, rice and barley. No routine transformation system for monocotyledons has been reported, such as the Ti-mediated gene transfer system for dicotyledons facilitated by Agrobacterium tumefaciens. Indirect evidence suggests that Ti-plasmid DNA is transferred into and expressed in A. tumefaciens-infected wound tissues of plants from Liliaceae and Amaryllidaceae, but these observations have not been extended to monocotyledons of greatest agricultural importance. Regeneration of monocotyledons is usually blocked at the callus-stage, further complicating the possibility of exploring the regulated expression of their genes, and thus preventing identification of the regulatory domains of monocotyledonous genes in a homologous nuclear background. To circumvent these difficulties, we investigated whether monocotyledonous genes can be expressed and correctly regulated in dicotyledons. We have introduced a wheat gene (whAB1.6) encoding the major chlorophyll a/b binding protein (Cab) of the light-harvesting complex into the genomes of tobacco (Nicotiana tabacum SR1) and petunia (Petunia hybrida) via a Ti-DNA-mediated gene transfer system which allows the transformed cells to regenerate into whole plants. Here we report for the first time the light-regulated and organ-specific expression of a monocotyledonous gene in transgenic dicotyledonous plants.  相似文献   

11.
E Robertson  A Bradley  M Kuehn  M Evans 《Nature》1986,323(6087):445-448
Embryonic stem cells isolated directly from mouse embryos can be cultured for long periods in vitro and subsequently repopulate the germ line in chimaeric mice. During the culture period these embryonic cells are accessible for experimental genetic manipulation. Here we report the use of retroviral vectors to introduce exogenous DNA sequences into a stem-cell line and show that these modified cells contribute extensively to the somatic and germ-cell lineages in chimaeric mice. Compared with current methods for manipulation of the mouse genome, this approach has the advantage that powerful somatic-cell genetic techniques can be used to modify and to select cells with germ-line potential, allowing the derivation of transgenic strains with pre-determined genetic changes. We have by this means inserted many proviral vector sequences that provide new chromosomal molecular markers for linkage studies in the mouse and that also may cause insertional mutations.  相似文献   

12.
13.
Infection of mice with Moloney murine leukaemia virus (MuLV) induces T-cell lymphomas after an average latency period of 150 days. In these lymphomas the MuLV DNA is frequently integrated into the mouse chromosomal DNA in the vicinity of the pim-1 oncogene. Transgenic mice overexpressing the pim-1 oncogene are predisposed to develop T-cell lymphomas, but only to the extent that approximately 10% of the mice develop a lymphoma within 240 days. When these mice are infected with MuLV, lymphomas develop in all mice in only 50-60 days. In these lymphomas MuLV DNA is integrated near either the c-myc or N-myc gene, suggesting that pim-1 and myc synergize in lymphomagenesis. To determine whether this system has a more general application, we have now tested the susceptibility of pim-1 transgenic mice to N-ethyl-N-nitrosourea (ENU), a chemical carcinogen. With a single low dose of ENU, nearly all pim-1 transgenic mice, but only 15% of non-transgenic mice, develop T-cell lymphomas within 200 days. All ENU-induced lymphomas in both pim-1 transgenic and non-transgenic mice express high levels of c-myc messenger RNA, supporting the notion that pim-1 and c-myc synergize in lymphoma induction. We propose that pim-1 transgenic mice could be used to test the oncogenic potential of other chemical compounds.  相似文献   

14.
M Hadchouel  H Farza  D Simon  P Tiollais  C Pourcel 《Nature》1987,329(6138):454-456
Differential modifications of the genome during gametogenesis result in a functional difference between the paternal and maternal genomes at the moment of fertilization. A possible cause of this imprinting is the methylation of DNA. The insertion of foreign DNA into transgenic mice allows the tagging of regions that are differentially methylated during gametogenesis. We describe here a transgenic mouse strain in which the expression of the hepatitis B surface antigen gene is irreversibly repressed following its passage through the female germ line. This inhibition is accompanied by the methylation of all the HpaII and HhaI sites within the foreign gene, which we have shown to be integrated into a site on chromosome 13. The irreversibility reported here contrasts with what is found with other transgenic mice sequences which are reversibly methylated after passage through the male or female germ line, though in both cases methylation appears to be important in the imprinting process.  相似文献   

15.
A fundamental question about the pathogenesis of spontaneous autoimmune diabetes is whether there are primary autoantigens. For type 1 diabetes it is clear that multiple islet molecules are the target of autoimmunity in man and animal models. It is not clear whether any of the target molecules are essential for the destruction of islet beta cells. Here we show that the proinsulin/insulin molecules have a sequence that is a primary target of the autoimmunity that causes diabetes of the non-obese diabetic (NOD) mouse. We created insulin 1 and insulin 2 gene knockouts combined with a mutated proinsulin transgene (in which residue 16 on the B chain was changed to alanine) in NOD mice. This mutation abrogated the T-cell stimulation of a series of the major insulin autoreactive NOD T-cell clones. Female mice with only the altered insulin did not develop insulin autoantibodies, insulitis or autoimmune diabetes, in contrast with mice containing at least one copy of the native insulin gene. We suggest that proinsulin is a primary autoantigen of the NOD mouse, and speculate that organ-restricted autoimmune disorders with marked major histocompatibility complex (MHC) restriction of disease are likely to have specific primary autoantigens.  相似文献   

16.
Participation of CD4 coreceptor molecules in T-cell repertoire selection.   总被引:10,自引:0,他引:10  
During thymocyte development, progenitor cells bearing both CD4 and CD8 coreceptor molecules mature into functional T lymphocytes that express these proteins in a mutually exclusive way. Although T-cell specificity is determined primarily by the structure of the T-cell antigen receptor (TCR) heterodimer, a developmentally regulated process acts to ensure that cells bearing class II-restricted TCRs are CD4+ and those bearing class I-restricted TCRs express only CD8. To investigate this maturation process, we have engineered transgenic mice in which CD4 is expressed in all thymocyte subsets and in all peripheral T cells. Peripheral CD4+8+ T lymphocytes from these mice react with both class I and class II alloantigens. Moreover, expression of the CD4 transgene disrupts the positive selection of doubly transgenic thymocytes bearing a class I-restricted TCR specific for the male (H-Y) antigen. Hence the CD4 coreceptor participates directly in T-cell repertoire selection.  相似文献   

17.
The neurohumoral regulation of growth hormone secretion is mediated in part by two hypothalamic peptides that reach the anterior pituitary via the hypothalamo-hypophysial portal blood system. Somatostatin inhibits the release of growth hormone, whereas growth hormone-releasing factor (GRF) positively regulates both growth hormone synthesis and secretion. Two forms of human GRF, 40 and 44 amino acids long, have been characterized from extra-hypothalamic tumours as well as from the hypothalamus. Analysis of human GRF complementary DNA and genomic clones indicates that the GRF peptides are first synthesized as a 107- or 108-amino-acid precursor protein. To examine the physiological consequences of GRF expression, we have established strains of transgenic mice containing a fusion gene including the promoter/regulatory region of the mouse metallothionein-I (MT-I) gene and the coding region of the human GRF gene. We report that expression of the human GRF precursor protein in these animals results in measurable levels of human GRF and increased levels of mouse growth hormone in plasma and accelerated growth rates relative to control littermates. These results demonstrate a direct role for GRF in the positive regulation of somatic growth. Unexpectedly, female transgenic mice carrying the MT-GRF fusion gene are fertile, in contrast to female transgenic mice expressing human or rat growth hormone, which are generally infertile. These transgenic mouse strains should provide useful animal models for the study of several types of human growth disorders.  相似文献   

18.
Interaction of a B cell expressing self-specific B-cell antigen receptor (BCR) with an auto-antigen results in either clonal deletion or functional inactivation. Both of these processes lead to B-cell tolerance and are essential for the prevention of auto-immune diseases. Whereas clonal deletion results in the death of developing autoreactive B cells, functional inactivation of self-reactive B lymphocytes leads to complex changes in the phenotype of peripheral B cells, described collectively as anergy. Here we demonstrate that deficiency in protein kinase Cdelta (PKC-delta) prevents B-cell tolerance, and allows maturation and terminal differentiation of self-reactive B cells in the presence of the tolerizing antigen. The importance of PKC-delta in B-cell tolerance is further underscored by the appearance of autoreactive anti-DNA and anti-nuclear antibodies in the serum of PKC-delta-deficient mice. As deficiency of PKC-delta does not affect BCR-mediated B-cell activation in vitro and in vivo, our data suggest a selective and essential role of PKC-delta in tolerogenic, but not immunogenic, B-cell responses.  相似文献   

19.
20.
D A Nemazee  K Bürki 《Nature》1989,337(6207):562-566
B lymphocytes can be rendered specifically unresponsive to antigen by experimental manipulation in vivo and in vitro, but it remains unclear whether or not natural tolerance involves B-cell tolerance because B cells are controlled by T lymphocytes, and in their absence respond poorly to antigen (reviewed in ref. 7). In addition, autoantibody-producing cells can be found in normal mice and their formation is enhanced by B-cell mitogens such as lipopolysaccharides. We have studied B-cell tolerance in transgenic mice using genes for IgM anti-H-2k MHC class I antibody. In H-2d transgenic mice about 25-50% of the splenic B cells bear membrane immunoglobulin of this specificity, and abundant serum IgM encoded by the transgenes is produced. In contrast, H-2k x H-2d (H-2-d/k) transgenic mice lack B cells bearing the anti-H-2k idiotype and contain no detectable serum anti-H-2k antibody, suggesting that very large numbers of autospecific B cells can be controlled by clonal deletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号