首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 46 毫秒
1.
文中主要研究了具有曲率的一类特殊的芬斯勒流形——Randers流形。首先回顾了芬斯勒流形的基本知识及芬斯勒流形的导航问题的有关事实。进一步通过对导航问题的研究转化为将Randers流形转化为黎曼流形的研究,利用Schur引理,证明了Randers流形具有标量旗曲率当且仅当该流形具有常曲率这一性质。  相似文献   

2.
研究了具有标量旗曲率的R-齐次芬斯勒度量,证明了具有非零标量旗曲率的R-齐次芬斯勒度量必然是黎曼度量.  相似文献   

3.
本文应用Finsler几可的理论给出了计算具有常截面曲率的Riemann度量的截面曲率的新方法.  相似文献   

4.
首先证明了当‖β‖α<1时,复Randers度量的Cartan挠率具有上界.然后推导出所构造的含有3个参数的复Randers度量要么是非弱K(a)hler Finsler度量,要么满足(β)b0|0+βb-0|0≠0,并且该度量具有一致上界.最后给出一些例子说明如果ρ2+λε=0,那么它们的全纯曲率都是非正的.  相似文献   

5.
根据文献[1]构造的几类广义(α,β)-度量,研究了一类新的(α,β)度量并给出它的Scalar旗曲率.  相似文献   

6.
研究了Finsler几何中一类特殊(α,β)-度量-指数度量F=αeks的S-曲率性质.笔者通过把指数度量的S-曲率与其特殊S-曲率的表达式进行比较,采用代数方程公式运算的方法,分析方程因式指数的变化,得到了指数度量具有迷向S-曲率的充要条件:指数度量具有迷向S-曲率当且仅当它具有迷向平均Berwald曲率.此时,该度量的S-曲率为零,且是弱Berwald度量.结论表明:对于这类特殊的(α,β)-度量来说,它的曲率性质较简单,即它有迷向S-曲率等价于它有迷向平均Berwald曲率,等价于它具有为零的S-曲率.  相似文献   

7.
Funk度量F是一个射影平坦的Finsler度量,它具有常曲率K=-1/4和常S-曲率S=1/2(n 1)F,首先在欧氏空间R^n的一个强凸区域Ω上用Funk度量F和闭1-形式β构造了一类新的Finsler度量-/F=F+β,然后分别找到了-/F具有常曲率和常S-曲率的充分必要条件。  相似文献   

8.
局部对偶平坦的Randers度量   总被引:1,自引:1,他引:0  
研究Randers度量F=α+β(其中α是黎曼度量,β是1-形式)的局部对偶平坦问题.得到了当α是局部射影平坦时F是局部对偶平坦的充要条件.  相似文献   

9.
研究具有迷向S-曲率的Douglas(α,β)-度量F=αφ(β/α),其中α=aij(x)yiyj~(1/2)为黎曼度量,β=bi(x)yi为流形上的1-形式.得到其为具有迷向S-曲率的Douglas度量的充要条件是β关于α是平行的.进一步,完全地分类了局部射影平坦且具有迷向S-曲率的(α,β)-度量.  相似文献   

10.
在n(n≥3)维芬斯勒流形(M,F)上,利用芬斯勒几何的基础知识和基本方法得到了对称芬斯勒度量F(reversible Finsler metric)具有若干很好的曲率性质;并进一步证明了对称(α,β)-度量F=αφ(s)具有相对迷向平均Landsberg曲率的充分必要条件是F为黎曼度量或Berwald度量,拓展了沈忠民等人的结果。最后证明了对称芬斯勒度量F具有殆迷向S-曲率时,F必为弱Berwald度量,这时如果F还具有标量旗曲率K(x,y),那么K(x,y)必为常数。  相似文献   

11.
12.
作者通过一个微分方程构造了一类具有常旗曲率 K=1的射影平坦的Finsler度量。  相似文献   

13.
研究了引力场的Eguchi-Hanson型度量的数量曲率方程的解.这些解可用来构造带宇宙常数的引力瞬子.  相似文献   

14.
球面上具有常数量曲率的超曲面   总被引:5,自引:0,他引:5  
令M是单位球面Sn+1的具有常数量曲率ρ的紧超曲面,n≥3,ρ≥n(n-1).|B|2为第二基本形式的模平方.如果|B|2-2n-1拟负,那么M是一个小超球面.  相似文献   

15.
设Mn是Mnp+p(c)中的一个标准数量曲率为常数c且法丛平坦的n维紧致类空子流形,本文给出了Mn为全脐子流形或全测地子流形的刚性条件.  相似文献   

16.
设M为de Sitter空间ST^n 1(c)中的n维(n≥3)完备类空超曲面,具有常数量曲率R(R≤n(n-1))以及非负Ricci曲率,若sup H^2≥1,则它与欧氏空间或者双曲柱面等距.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号