共查询到19条相似文献,搜索用时 78 毫秒
1.
本文简要介绍了GPS定位的优越性及GPS定位采用的地球(地心)坐标系--WGS 84世界大地坐标系统;GPS测量的大地高与我国采用的正常高系统的高程转换与高程拟合问题等。 相似文献
2.
支持向量机在机械设备振动信号趋势预测中的应用 总被引:13,自引:0,他引:13
将支持向量机(SVMs)用于机械设备振动信号趋势预测中,研究了SVMs参数及核函数类型对SVMs预测能力的影响.试验显示,在短期预测中4种核函数有着基本相同的预测能力,而在长期预测中,径向基函数核和多项式核表现出了相对较高的预测能力,同线性核和神经网络核相比,它们的归一化均方误差约降低了20%.SVMs与向后传播神经网络、径向基函数网络和广义回归神经网络预测能力的对比表明,实现了结构风险最小化原理的SVMs具有更好的预测能力,在长期预测中,其归一化均方误差约降低了15%。 相似文献
3.
提出基于支持向量机的地基单站GPS遥感大气剖面的反演方法,主要包括经典支持向量机、最小二乘支持向量机、相关向量机3种方法,利用青岛地区的历史数据进行了仿真反演对比研究,并与神经网络反演方法进行比较,结果表明支持向量机能够有效地应用于地基单站GPS大气遥感领域. 相似文献
4.
支持向量机作为一种重要的机器学习工具,近年来受到了广泛的关注,并得以迅速发展.但在处理大数据时,求解支持向量机对应的二次规划问题是非常棘手的,计算时间长,存储空间大.如何有效求解支持向量机是一个不可回避的研究课题.本文主要研究了如何利用牛顿法求解支持向量机和双生支持向量机,并提出了两个新算法.实验结果表明,所提算法是有效和高效的. 相似文献
5.
提出了利用支持向量机回归建立减振器非参数模型的方法。之后,利用支持向量机建立的模型与两类神经网络模型进行了对比。一类是反向传播神经网络,另一类是径向基函数神经网络。这三种模型分别在虚拟减振器与真实减振器上进行了比较。比较结果证明反向传播神经网络对虚拟减振器的辨识结果最好,而支持向量机回归算法对真实减振器的辨识效果最好。其原因是由于真实减振器的试验数据均具有噪声,而支持向量机对噪声具有一定的鲁棒性。 相似文献
6.
基于支持向量机的软测量建模方法的应用 总被引:1,自引:0,他引:1
利用基于最小二乘支持向量机(LS-SVM)的软测量建模方法,通过工业现场数据来对丁二烯精馏装置建立软测量模型.对于该软测量模型,支持向量机方法比BP神经网络方法具有更好的泛化能力.研究结果表明,基于最小二乘的支持向量机建模方法是一种有效的软测量建模方法. 相似文献
7.
最小二乘支持向量机在人脸识别中的应用 总被引:4,自引:0,他引:4
支持向量机(SVM)模式识别方法具备良好的分类性能和鲁棒性,在介绍了典型支持向量机与最小二乘支持向量机(LS_SVM)原理的基础上,给出最小二乘支持向量机的算法实现过程,将其应用于人脸识别当中,取得较典型支持向量机在时间上较好的效果.在OPL人脸库中的实验结果表明,基于LS_SVM的人脸自动识别系统更能适用于实时性要求较高的场合. 相似文献
8.
针对变压器传统检测方法的局限性,本文提出了一种基于支持向量机的电力变压器故障诊断方法,并构建了相应的数学模型。仿真结果表明,该模型能有效提高变压器故障诊断的准确率。 相似文献
9.
支持向量机在水资源中的应用较少,主要用于水资源时间序列预测。在介绍支持向量机回归原理的基础上,着重介绍支持向量机在水资源研究中的应用,并提出了应用中存在的一些问题。 相似文献
10.
刘保 《西昌学院学报(自然科学版)》2015,(3):42-45
文章分别使用BP、RBF等神经网络和支持向量机等非线性方法对相同的水质数据建立分类模型。使用支持向量分类机建立水质分类模型过程中,选用RBF核函数,结合归一、降维等数据预处理手段,利用网格搜索算法对参数进行寻优,得出水质分类模型。实验结果证明在非线性方法中,采用支持向量机并结合相应的数据预处理手段这种方案得出的分类准确率更高,更加具有推广性。 相似文献
11.
基于支持向量机的模式识别方法 总被引:4,自引:0,他引:4
介绍了由Vapnik等人提出的统计学习理论和由此发展的支持向量机,分析了其应用前景和研究方向,两个算例表明,在模式识别领域中,采用支持向量机这一新方法,具有其他传统方法不可比拟的优势。 相似文献
12.
钻井成本是钻井公司成本的重要组成部分,对钻井成本进行准确预测,有利于提高钻井成本的控制和计划管理水平.应用作业成本法分析影响钻井成本的主要因素,结合某钻井公司钻井成本数据,运用支持向量机回归建立预测模型,同多元回归与BP神经网络回归进行对比,验证了支持向量机模型具有较高的预测精度. 相似文献
13.
在非合作通信系统中,需要在非理想化的信道特性下对接收信号进行调制样式的自动识别.使用了一种以支持向量机作为分类器的方法进行数字信号调制样式的识别.实验结果表明,该调制识别方法在小样本下具有较高的识别率,可以应用在数字信号的调制识别系统中. 相似文献
14.
模糊孪生支持向量机通过为每个训练样本赋予不同的模糊隶属度来构建2个最优非平行分类面,以便减少噪声或孤立点对非平行分类面的影响,进一步提高了支持向量机的性能.本文结合超松弛迭代法对模糊孪生支持向量机进行了研究,通过迭代技术求解凸二次规划问题中的拉格朗日乘子,减少了支持向量机的训练时间,在UCI标准数据集上分别对C-FTSVM和v-FTSVM进行了实验研究,并对使用传统求拉格朗日乘子的方法与超松弛迭代(SOR)的方法进行了对比,表明了使用超松弛迭代法不仅在时间性能上得到了提高,而且其分类正确率也优于传统的方法. 相似文献
15.
讨论了支持向量机回归与v-支持向量机分类解的关系,证明了对给定的v-支持向量机分类问题的解,通过选择适当参数,存在一个支持向量机回归问题的解与它等价. 相似文献
16.
一种基于ICA-SVM的故障诊断方法 总被引:1,自引:0,他引:1
提出了一种基于独立分量分析和支撑向量机(ICA SVM)对系统性能进行监控的整体框架.这一框架包括特征提取和故障识别两部分.独立分量分析被用于从当前工况的数据矩阵中提取出代表当前工况特征的投影系数矩阵,而这些投影系数矩阵则被用于训练多个支撑向量机,以实现故障类型的识别.TennesseeEastman过程的仿真结果证明了该算法的有效性. 相似文献
17.
18.
犯罪时间序列一般具有随机性和波动性强的特点。传统的时间序列建模方法利用犯罪时序数据之间的相关性建立预测模型;但对细颗粒度下的信息利用不足。相比之下,基于模糊信息粒化的支持向量机能够在对时间序列的细颗粒度数据进行粒化预处理的基础上建立拟合回归模型,实现粗颗粒度下的时序预测。利用基于模糊信息粒化的支持向量机方法对S市的侵财类案件数据进行分析预测,并与ARIMA模型进行了比较。结果表明该方法在预测精度上要显著优于时间序列预测模型。对公安部门的警务指挥与情报研判具有较高的实用性。 相似文献
19.
针对现有射频功率器件建模方法的不足,运用支持向量机对射频功率器件进行建模.通过软件仿真对比了支持向量机和神经网络的不同结果,得出支持向量机建立的模型精确度更高,更适合小样本条件下的建模.并且针对实际测试中出现的特殊情况,提出引入领域知识的方法,将散射函数具有的约束条件同支持向量机结合,使得支持向量机具有相关领域知识的支撑.比较了原始和领域知识支持向量机建模的不同结果,得出领域知识支持向量机在该种情况下具有更好的模型精度. 相似文献