首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
聚类已成为数据挖掘的主要方法之一,能够帮助人们在大量的数据中发现隐藏信息。目前最具典型的密度聚类算法是DBSCAN(density-based spatial clustering of applications with noise),它能够在空间数据库中很好地发现任意形状的簇并有效地处理噪声,但是它的计算复杂度相对较大。因此,采用划分数据集和聚簇合并方法,提出了一种基于密度和网格的高效聚类算法DGCA,并通过人工合成数据集和真实数据集对该聚类算法进行理论验证。实验结果表明该算法在效率性能和质量方面比DBSCAN都得到了提高。  相似文献   

2.
一种基于密度和网格的高效聚类算法   总被引:1,自引:0,他引:1  
聚类已成为数据挖掘的主要方法之一,能够帮助人们在大量的数据中发现隐藏信息.目前最具典型的密度聚类算法是DBSCAN(density-based spatial clustering of applications with noise),它能够在空间数据库中很好地发现任意形状的簇并有效地处理噪声,但是它的计算复杂度相对较大.因此,采用划分数据集和聚簇合并方法,提出了一种基于密度和网格的高效聚类算法DGCA,并通过人工合成数据集和真实数据集对该聚类算法进行理论验证.实验结果表明该算法在效率性能和质量方面比DBSCAN都得到了提高.  相似文献   

3.
谱聚类是一种基于图谱划分理论的聚类算法,本质上是将聚类问题转化为图的最优划分问题;量子聚类可以充分挖掘数据样本的内在信息,是一种基于划分的无监督聚类算法.为了充分发挥谱聚类算法和量子聚类算法的优势,本文提出了一种基于流形距离核的谱聚类和量子聚类融合算法(MFD-NJW-QC).首先,计算数据集的流形距离核矩阵,构造相应的拉普拉斯矩阵;其次,根据拉普拉斯矩阵的若干最大特征值对应的特征向量构造新数据集,并使用量子聚类算法对新构造的数据集进行聚类,从而得到原始数据的类标签;最后,基于7个人工数据集和5个UCI数据集验证MFD-NJW-QC算法的聚类性能.结果显示,MFD-NJW-QC算法能够明显提高聚类性能,尤其对于具有流形结构,且类簇大小不平衡、密度分布不均匀的数据集优势更为突出.  相似文献   

4.
DPC算法是一种能够自动确定类簇数和类簇中心的新型密度聚类算法,但在样本分配策略上存在聚类质量不稳定的缺陷.其改进算法KNN-DPC虽然具有较好的聚类效果,但效率不高而影响实用.针对以上问题,文中提出了一种近邻密度分布优化的DPC算法.该算法在DPC算法搜索和发现样本的初始类簇中心的基础上,基于样本的密度分布采用两种样本类簇分配策略,依次将各样本分配到相应的类簇.理论分析和在经典人工数据集以及UCI真实数据集上的实验结果表明:文中提出的聚类算法能快速确定任意形状数据的类簇中心和有效地进行样本类簇分配;与DPC算法和KNN-DPC算法相比,文中算法在聚类效果与时间性能上有更好的平衡,聚类稳定性高,可适用于大规模数据集的自适应聚类分析.  相似文献   

5.
一种基于网格的层次聚类算法   总被引:1,自引:0,他引:1  
传统的凝聚层次聚类算法的时间复杂度为O(n3),由于时间复杂度太高而无法应用到大的数据集.针对这一问题,提出了一种新的基于网格的层次聚类算法,先用基于网格的方法进行一次微聚类,然后再用凝聚的层次聚类算法进行聚类.在进行凝聚的层次聚类时,提出了一种新的簇间距离度量方法,该方法采用簇中权值最高的代表点的最小距离作为簇间的距离.理论分析和实验结果表明,基于网格的层次聚类算法比传统的凝聚层次算法具有更高的效率和正确性.  相似文献   

6.
作者针对传统k-means初始点的选择提出基于最小距离的优化算法。首先构造数据点集的带权无向图,更新数据点间的最小距离,然后利用最小距离获取数据点的密度函数,通过数据点的密度获取初始聚类中心,最后根据带权无向图中的路径长度获取邻近数据点形成初始聚类,对初始聚类内的数据点平均得到该类簇的聚类中心。实验结果表明,在相同的条件下所提算法在聚类效果上优于传统的k-means算法。  相似文献   

7.
一种基于密度的聚类算法实现   总被引:1,自引:0,他引:1  
基于密度的聚类算法OPTICS是一种大规模数据库的聚类算法,它是基于核心对象和可达距离来实现的.对于每一个核心对象将其邻域内的所有对象按到该核心对象的可达距离进行排序,每次都选择1个到该核心对象具有最小的可达距离的对象进行信息更新.算法实现采用优先队列保存候选对象以加快处理速度,最后用UCI数据集对算法进行聚类效果测试,结果表明OPTICS算法对数据集产生一个基于密度的簇排序结构.  相似文献   

8.
针对传统K-means算法的聚类结果依赖初始聚类中心的缺陷,提出了一种基于密度的改进K-means聚类算法,该算法选择位于数据集样本密集区且相距较远的数据对象作为初始聚类中心,实现K-means聚类。针对PAM算法时间复杂度高,且不利于大数据集处理的缺陷,提出了一种基于密度的改进K-medoids聚类算法,在选取初始中心点时根据数据集样本的分布特征选取,使得初始中心点位于不同类簇。UCI机器学习数据库数据集和随机生成的带有噪音点的人工模拟数据集的实验测试证明,基于密度的改进K-means算法和基于密度的改进Kmedoids算法都具有很好的聚类效果,运行时间短,收敛速度快,有抗噪性能。  相似文献   

9.
为了快速挖掘大规模空间数据的聚集特性,在cluster_dp密度聚类算法基础上,提出了一种基于弹性分布数据集的并行密度聚类方法 PClusterdp.首先,设计一种能平衡工作负载弹性分布数据集分区方法,根据数据在空间的分布情况,自动划分网格并分配数据,使得网格内数据量相对均衡,达到平衡运算节点负载的目的;接着,提出一种适用于并行计算的局部密度定义,并改进聚类中心的计算方式,解决了原始算法需要通过绘制决策图判断聚类中心对象的缺陷;最后,通过网格内及网格间聚簇合并等优化策略,实现了大规模空间数据的快速聚类处理.实验结果表明,借助Spark数据处理平台编程实现算法,本方法可以有效实现大规模空间数据的快速聚类,与传统的密度聚类方法相比具有较高的精确度与更好的系统处理性能.  相似文献   

10.
作为大数据的重要组成,产生于传感器、移动电话设备、社交网络等的不确定流数据因其具有流速可变、规模宏大、单遍扫描及不确定性等特点,传统聚类算法不能满足用户高效实时的查询要求.首先利用MBR(minimum bounding rectangle)描述不确定元组的分布特性,并提出一种基于期望距离的不确定数据流聚类算法,计算期望距离范围的上下界剪枝距离较远的簇以减少计算量;其次针对簇内元组的分布特征提出了簇MBR的概念,提出一种基于空间位置关系的聚类算法,根据不确定元组MBR和簇MBR的空间位置关系排除距离不确定元组较远的簇,从而提高聚类算法效率;最后在合成数据集和真实数据集进行实验,结果验证了所提出算法的有效性和高效性.  相似文献   

11.
密度峰值算法依赖于欧式距离实现局部密度的选择,该算法在处理高维数据、存在密度不均匀的类簇的数据集上效果不是很理想.针对以上问题,提出一种融合流形距离与标签传播的改进密度峰值聚类算法(improved density peak clustering combining manifold distance and labe...  相似文献   

12.
目的探索同时确定K-means算法的最佳聚类数K和最佳初始聚类中心的方法,使K-means算法的聚类结果尽可能地收敛于全局最优解或近似全局最优解。方法以次胜者受罚竞争学习(Rival Penalized Competitive Learning,RPCL)作为K-means的预处理步骤,以其学习结果作为K-means的聚类数和初始聚类中心并依据数据集样本自然分布定义样本密度,将此密度引入RPCL的节点权值调整,以此密度RPCL的输出作为K-means的最佳聚类数K和最佳初始聚类中心。采用UCI机器学习数据库数据集以及随机生成的带有噪音点的人工模拟数据集进行实验测试,并用不同的聚类结果评价指标对聚类结果作了分析。结果提出的密度RPCL为K-means提供了最佳的类簇数和最佳的初始聚类中心。结论基于密度RPCL的K-means算法具有很好的聚类效果,对噪音数据有很强的抗干扰性能。  相似文献   

13.
分析了CHAMELEON聚类算法的不足,定义一种基于k最临近集和共享k最临近集的相似度函数,在此基础上提出了一种结合分类算法的新聚类算法,经过对模拟的复杂数据组和KDD Cup'99网络非法入侵数据的实验,证明该算法能有效的对由大量噪音和不同形状、大小及密度的类组成的高维数据进行聚类.  相似文献   

14.
平衡迭代规约层次聚类(balanced iterative reducing and clustering using hierarchies, BIRCH)算法是一个综合的层次聚类算法。但BIRCH算法为叶子节点中的簇设置统一的空间阈值,根据数据对象与簇之间的距离来决定数据对象的插入位置,从而忽略了簇与簇之间的关系;此外,算法在分裂节点时,选取距离最远的2个聚类特征作为子簇,其他聚类特征会根据与这2个聚类特征之间的距离关系分裂为另外的子簇,造成处于簇与簇之间的样本数据错误分类,这样会忽略聚类特征之间的关系。针对BIRCH算法的这2个问题,提出了基于阈值的自适应算法,用于解决原算法统一空间阈值的问题;并在针对聚类特征关系的问题上,结合朴素贝叶斯算法对原算法进行改进。对改进后BIRCH算法与传统的算法进行仿真实验。结果表明,改进算法在损失效率的情况下,聚类效果得到了明显的改善,并且与其他算法相比,所提算法具有不错的表现性,而且具有跨数据集的鲁棒性。  相似文献   

15.
时空聚类(spatial-temporal density based spatial clustering of applications with noise,ST-DBSCAN)算法只能处理固定属性的时空数据,且其人为设定阈值的方法具有较大随机性会导致聚类结果不理想.基于ST-DBSCAN算法存在的不足,提出了一种改进的多属性时空聚类算法.改进后的新算法采用绘制时空对象距离频数柱状图来设定自适应阈值,通过引入Gower相似系数、Dice相似系数与欧几里德距离来构建多属性相似度模型,计算多个事务对象之间属性特征的相似度大小,从而将ST-DBSCAN时空聚类算法扩展到更多属性的时空数据聚类分析中.以北京市计算机行业职位招聘信息数据进行实验仿真,实验结果表明,新提出的阈值设定方法可以有效识别部分低密度簇,提高聚类的准确性和有效性;改进后的算法具有较好的普适性与包容性,能对多属性的时空数据进行很好的聚类分析.  相似文献   

16.
密度峰值聚类算法(density peaks cluster,DPC)是一种基于密度的聚类算法,该算法可以聚类任意形状的类簇.在类簇间有密度差距的数据集上,DPC不能准确地选择聚类中心.DPC的非中心点分配策略会引起连续错误,影响算法的聚类效果.模糊k近邻密度峰值算法(fuzzy k-nearest neighbor DPC,FKNN-DPC)是一种改进的DPC算法,该算法采用边界点检测并结合2步分配策略来避免连续错误.当类簇间有密度差距时,FKNN-DPC的边界点检测效果不理想,此外,其非中心点分配策略缺乏对样本近邻信息的考虑.定义相对密度(relative density)并结合近邻关系(nearest neighbor relationship)提出RN-DPC算法解决上述问题.针对DPC因为类簇间的密度差距而不能准确选择聚类中心的问题,定义相对密度用于消除类簇间的密度差距.基于反向k近邻关系检测边界点并且引入共享最近邻关系来对FKNN-DPC的分配策略进行改进.RN-DPC算法在人工数据集和真实数据集上分别与不同的聚类算法进行了对比,实验结果验证了RN-DPC算法的有效性和合理性.  相似文献   

17.
一种确定最佳聚类数的新算法   总被引:1,自引:0,他引:1  
针对K-均值聚类算法需要事先确定聚类数K的问题,将粒度计算引入样本相似度函数,定义了新的样本相似度,用模糊等价聚类确定数据集可能的最大类簇数Kmax.以Kmax为搜索上界,利用改进全局K-均值聚类算法,以BWP(Between-Within Proportion)为聚类有效性度量指标,提出确定最佳聚类数的一种新方法.通过UCI机器学习数据库数据集以及随机生成的人工模拟数据集实验测试,证明该算法不仅能有效确定数据集的最佳聚类数,而且适用于大规模数据集,但是会受到噪音点影响.  相似文献   

18.
多源局部放电检测中,不同类型的局放信号同时存在且不断变化使得信号的分离更具挑战,而这种情况同样存在于许多数据流的聚类分析场景中。为了能够适应类簇内的不均匀密度和类簇间的重叠边界问题,同时对数据流的漂移和演化进行及时跟踪,提出了一种结合软约束的实时数据流模糊聚类算法。算法引入2种模糊性软约束来描述微簇距离和密度上的不确定度,通过阈值划分出核心微簇、边界微簇和离群微簇;在类簇边缘使用模糊隶属度,给予微簇分属不同类簇的可能性,保证类簇的完整性并提高聚类效果;使用两阶段的流程结构和2种时间窗口模型,赋予算法具有对可变化数据流的适应能力和更低的时间空间占用率。在多种数据集上的实验表明,该算法相比同类型算法在聚类效果上提升了1%~3%,且平均运行时间缩短5%~20%,在实际硬件平台的测试中也验证了算法的聚类分离性能。  相似文献   

19.
为了解决以欧氏距离作为相似性准则的传统模糊聚类算法对多维数据处理不利的问题,采用马氏距离代替欧氏距离,对基于马氏距离的模糊聚类算法进行优化研究,以增强基于马氏距离的模糊聚类算法的聚类效果和能力。通过构造启发式搜索与k-means算法结合的初始优化方法,利用可以自动调节最佳聚类数的有效性函数,提出了一种优化算法KM-FCM,并将此新算法与FCM,FCM-M,M-FCM聚类算法在3个标准数据集上进行了实验。结果表明,KM-FCM算法有效,聚类精度比FCM,FCM-M,M-FCM高,对高维数据聚类识别能力强,具有全局优化作用,并且聚类个数无需提前设定。新算法可为基于马氏距离的模糊聚类算法的优化提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号